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Semi-Groups:

A semi-group is a set that upholds the following two coniditions:

(D,-) where Disasetand-isthe binary operator acting on the set

1. Ya,beDwehavethata-beD (Closure)
2. Va,b,ceD, (a-b)-c=a-(b-c) (Associative)
What are some examples of Semi-Groups?
Consider (D, -),where D=7 and - is the normal binary addition.

This is a semi-group because it satisfies the closure condition (i.e. Va,b€Z, we have a + b€Z).
Further, we have the associative condition satisfied trivially as well.

What is not a Semi-group?
Consider (D, -) where D is the set of odd numbers, and - is the normal binary addition.

This set is not a semi-group because of the fact that if we take two odd integers, a,beD, their
addition will result in an even number, which is not part of the set (Fails the closure condition).

Monoids:
(D, -)is a monoid if the following two conditions are satisfied:
1. (D,-)is a semi-group
2. deeD st ed=d-e=d VYdeD (Identity)

This identity can be the following under the normal circumstances we are used to, such as 1 for
the set of integers under multiplication, and 0 for the set of integers under addition.

Examples of monoids: (%, +)is a monoid because it is a semi-group and the identity exists.

Consider (Z™,+). This is not a monoid because the identity is 0 and 0 is not part of Z™. Similarly,
if we consider (D, +)where D = set of even numbers, this is also not a monoid because of the simple
fact that the identity, 1, is not an even number.

Groups:

(D, ) is a group if the following conditions are met:
1. (D,-) is a monoid, i.e. is also a semi-group with an identity element;

2. Va€D,Ja"'€Dsta-a"t=e (Inverse)



Simple example of a group: (Z, +). The inverse of every element is the negation of that element.
For example, if we consider the number 3, we know that the inverse is —3, since 3+ (—3) gives us
0, which is the identity.

On the other hand, (Q,-)is not a group, because of the fact that the 0 in the set of rational numbers
is troublesome. Every number multiplied by 0 will result in 0, so we don’t satisfy the identity
condition. In fact, the set (Q, ) is only a semi-group, not even a monoid. However, if we consider
the set (R*,-), where D =Q excluding 0, then this will be a group.

Is (Z*,-) a group?

No. This is because of the fact that the inverse of any number under multiplication is 1/n, and
fractions are not part of the set of integers. In fact, this set is a semi-group and a monoid, but
because of the lack of the inverse relationship, it cannot be a group.

Integers modulo n (Not covered until way later in the course)

Consider the notation: (Zy, ), where Z, ={0,1,2, . n—1}. This is the notion of the set of integers
modulo n.

Let us take a closer look at an example. Consider (Z4, +) as our set.

W N = O |

Table 1.

As we can see from our table, the additions taken place are not those which we are used to, because
we need to add w.r.t. modn, which is 4 in our case.

Is (Z4,+) a group? Yes. It is a monoid and every element has an inverse, though it may be hard
to see. The inverse of 1, for example, is 3, because 14+3=4=0mod4.

In fact, (Zyn, +) is a group for all n.

ifa€Zp,al=n—a
a+n —a=mn,andn modn = (0, which is the identity, e.

What about for (Zpy, x), where X is the normal multiplication under mod n. Consider the table
for Zs:

B W N = O X

Table 2.

This is obviously not a group because of the threat the 0 poses. However, if we consider (Z3, ),
where the * indicates the removal of the 0, then this is a group. Some of the inverses are as follows:

271 =3 since 2-3=6=1mod5, and 1 is the identity for multiplication.



471 =4 since 4-4=16 =1 mod5, etc.
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Abelian Groups:
A group (D, -) is called Abelian:

iffVa,beD,a-b=b-a (Commutative)

Whenever you hear “Abelian group,” know that it is commutative. We usually say commutative
for rings though. Therefore, a group is considered Abelian if the elements commute.

Ezample: (Z10,+) — Abelian group because Va,b€Z1p,a+b=>b+a. Remeber that (Z,,,+) is always
a group.

Now counsider (Zg, x). This is not a group. Which axiom fails in this case? Let’s go through it.
Summary of Group: Closure, associative, identity, inverse. Since we are considering Zg, we proceed
by providing a counterexample:

Consider (2 x¢3) =0mod6, 0 ¢ Zg
Since 0 ¢ Z§, we have found the product
of two elements in Z§ that result in
some value OUTSIDE of Zg*

Therefore by counterexample, (7Z§, x) is not a group.

Therefore, this set fails the closure axiom and cannot be a semi-group, monoid or group. Note
that if a single axiom fails then we do not have to continue. There is, however, another reason
why (Z§, x) is not a group. Conisder (2-2z)mod6=e=1. This element does not exist, and so the
inverse axiom has also failed for the set.

Fact: (Z;,, X) is a group iff nisprime. We cannot afford to forget this result. Remember this
fact.

(Z3, x) is a group because 5 is a prime number. but (Zis, x) is not a group because 15 is not a
prime number (15=3-5), and this set would fail the closure axiom because (3-5)mod15=0and 0
is not part of Zis.

(Z3, %), where n is assumed to be prime, is an Abelian group.

What are some examples of non-Abelian groups? We will get to this later on, but we will now
consider a group studied in Linear Algebra.

Consider: (Z,—). Check for closure, associative, identity, inverse.

Remember that e is an identity if e-a=a-e=a. Now let’s consider it for this set. The trivial
identity asssumed is e=0.

However, let’s take a=4€Z. 4 — 00 —4. So this axiom clearly fails. Therefore, this set is a group
but not an Abelian group.

Food for thought: In real life, we only have addition and multiplication. Everything else is either

an extension or an inverse of these two operations. For example, in (Z,+), which is a group, the

number 5 has an inverse, —5. This is the additive inverse. Then we can see that, for example,

5—3=5+(—3). This is the correct way to consider numbers in Z. Furthermore, division should
3

. 1
be more clearly viewed as: +=0X3, etc.

This shows us that division and subtraction is non-Abelian.



Let’s take (D ={A € R?*?|det(A) # 0}, x). This means that D is under matrix multiplication.
This will be a group, but this will NOT be Abelian. Multiplication between matrices is not always
commutative, as we have learned in Linear Algebra. In “Street Language,” D is the set of all 2 x 2
invertible matrices (since det(A)#0), and the binary operation is the matrix multiplication.

i. Closure: The matrix multiplication of two 2 x 2 matrices is another 2 x 2 matrix

—-

i. Inverse: The matrices are assumed to be invertible because det(A4) % 0.

iii. Identity: The identity matrix for R?*? is I, or

(a7)

iv. Associativity is clear. VA, B,C €D, (Ax B)xC=Ax (BxC)eD

The commutivity, however, fails because for A, BED, A x B #+ B x A. Therefore, this group is
clearly not Abelian.

As a matter of fact, all invertible matrices of size n x n are groups, but they are not Abelian. This
is the best example of non-Abelian groups.

Uniqueness of Identity:

Let (D,-) be a group. Then D has exactly one identity, e. i.e. For any group, (D, ‘), the identity
is unique. Let’s try to prove this:

Proof by contradiction: Assume f,e € D, both are identities. We must show that e= f. Since e is
an identity of D, then e- f = f. Since f is also an identity of D, then f-e=e. i.e.:

This is clearly a contradiction unless e= f. Therefore, we can establish that the identity of a group
is unique.

Uniqueness of the Inverse:

If (D,") is a group, then for every a € D,a~! is unique. This means that each element of D has
one and only one inverse. Let’s prove this.

Proof by contradiction: Assume we have an element, a € D, that has two inverses, band w. We now
work to show that b=w for a~! to be unique.

Hence: a-b=e and a-w=-e. We also know that e is unique based on the previous proof.

a-b=e=a-w=a-b=a-w
a-b-b=a-b-w
(a-b)-b=(a-b) - w
e-b=e-w

Therefore b=w



Fact: For a group, (D, X),a-b=a-c=b=c. We know that the identity for a group is unique,
and the inverse is unique. Even if we have: b-a=c-a==b=c (Works from both sides). This is
the cancellation.

Consider (Zg, x). Let’s take 2 x 2=4=4mod6 and 2 x 5=10=4mod6. We can’t cancel, because
that would imply 2 x 2=2 x 5. Cancellation is invalid.

What is the order of an element?
Assume (D, -) is a group. Take a € D, |a|=ord(a),order of a.

ord(a) = Smallest positive integer,n, s.t. a-a-a-a.  -a (ntimes)givesyoue. i.e. a”=e. If such

n does not exist, then ord(a) =o0o. We cannot find a positive integer, n, s.t. a® =e.

Let’s take (Zg, +). We know that is an Abelian group. Consider 3%. This is (3 4+ 3+ 3 + 3)mod6.
Clearly, the exponent here is different to that we know in Z.

Similarly, for (%31, x), which is again, an Abelian group, 3*= (3 x 3 x 3 x 3)mod11.

Let’s return to (Ze, +). What is ord(1) =|1|? We want 1" =0, i.e. the smallest possible n to give
us the identity, 0.

1+14+14+14+1+1=6mod6=0=¢

So, |1]=6.
What about ord(0)? i.e. 0™ =0, but 0=0, so the order of 0 is 1. i.e. ord(0) =|0|=1.

In general, |e|=1foralle. In words, this means that the order of the identity of the group is always
1.

What is |2|? We take the same idea to get 2" =0
24+2+2=6=mod6=0,so0rd(2)=n=3

Similarly, ord(4) =3 because 4+ 4 +4 =12=0mod6. This same idea follows through for all integers
under Zg.

Now, for ord(5), we have 5+5+5+5+5+5=30=0mod6, so |5|=6. It should make sense now
for all binary operations or elements in a set.

Notation:

Assume (D, ) is a group.
i am-a"=qgmt" (where m,n € Z)

ii. a7 "= (a" )" (neZ)

We can still use these properties. Let’s take a few examples to solidify this;



For (Zl()a +)a
25+26:211

This statement is true for all elements of Zq, under +.

In fact, that statement is true for any group of the form (Z,,+), or even (Z, +) itself. Remember
to always think of what planet you’re in.

Now consider (Z1o,+), and 273. This means (271)3.

(271) =8, since 2 + 8 = 0mod10
Hence we have: 8 4+ 8 + 8 =24 = 4mod10
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Order of elements in groups:

To recall, by definition, the order of an element in a group is the smallest positive integer, n, where
a™=e (identity).

Result: Assume (D, ) is a group and a € D s.t. ord(a) =|a|=n < co (We are assuming the order
of a is finite).

ifa™=e forsomem e Z*

Then: n|m (i.e. nis a factor of m). In other words, m is divisible by n. How do we prove a result
like this?

Proof: We can write any number as m=kn+r, k>0 and 0 <r <n. We need to show that n is a
factor of m. To do this, remainder (r) is 0. If we show that r =0, then we are done with the proof.

Hypothesis: Since a™ = e, we have a*"*"=e=a*"-a" (See previous lecture notes for this fact).

Now we now that a™ =e (since n=|a|). Then we can see that: (a")*-a" =e.

Since a™ =e,

wehave: (e)F-a"=e
eh=e VE=0

so: e-(a")=e

therefore:

a"=e
We know that since 0 <7 <n and |a| =n, r #n. But there has to be another value for r where if
we take a”, we get the identity. Note that: a®=e Va € D. Therefore, we conclude that r = 0.
Hence m =kn, i.e. the remainder, r is 0 and we have shown that n|m.

The more results and facts you know in Abstract Algebra, then the easier the course is going to
be for you. This is why you need to remember all these facts mentioned in the notes.

Result: Last time we proved that each group has one identity and the inverse is unique. This is
an extension on that.



Assume (D, -) is a group. Let a € D. Then |a|=|a~|. i.e. a and its inverse have the same order.
Let’s first take examples to demonstrate.

Consider (Zg,+). 1~ =5 (By simple observation). Now we can see that |1|=15|.
1] for (Zg, +):
(1+14+1414141)mod6=06mod6 =0, therefore|1| =6
|5 for (Zg, +):
(5+5+5+45-+5+5)mod6 = 30mod6 = 0, therefore |5| =6

Proof: We have two cases. The first of which is if the order of a is infinite. The second is if the
order is finite. We will show for both cases.

First case: |a|=o0 (i.e. a"#e VneZ') We now show that |a~!| = oo.

We will do this by contradiction. Assume |a~}|=m < oo. Thus: (a™™)=(a"1)™ =e. Now we can
proceed by the following:

Notice that (a=™)=(a"!)™=e By assumption
a™-(a"Hm=am e
(a a—l)m =am-e=a™

This is a contradiction since |a|= oo, but the proof shows that |a| is finite. Therefore |a|=|a1|.

Now, assume |a| =m < co. Show that |a=1|=m. Let k=|a"!|. We need to show that k=m.

(a-a~DYr=ak- (a1 =ak. e =gk
But (a-a )f=ef=e

Therefore e=a*
So we can conclude that (By result 1) that m|k. If m is a factor of k,

e= (a.a—l)m:am. (a—l)mze. (a—l)m

e=(a )" = k|m

So we can establish that m =k since both are factors of each other. Therefore, we can see that for
any group, (D, ) where a € D, |a|=|a"!|.

Greatest Common Divisor:

ged (my,n)

Result: Assume we have a group (D, -),a € D st |a|=m < co. If we know |a| =m, can we conlcude
anything on higher powers of a?
k| = m

wed iy TheZ

la

The proof for this is a little technical and we will not cover it in the notes. However, we will consider
the following question. How do we use this result?



Given a € D and |a| = 12, we can calculate any |a*|. For example,

12 12
T L
= a5y 1
12 12
8 = =
= edm 1y "1 8
12 12
9 = =
a7l = ged (9,12) 3 4

What about:  |a=%|?
We know (By result 2) that [a =1 =12

12 12
e D =12 _12_
Then: |(a )|7gcd(4,12) 1 3
12
o™= edio,12) ~©

We can safely conclude that given |al|, |a*|=|a=*|. This is another useful result we can use.

Subgroups:

Let (D,-) be a group and H C D. We say H is a subgroup of D if (H,-) (Same binary operation)
is also a group. This is like in linear algebra. This is very similar to a subspace. A group is like a
vector space.

For example, every vector space under addition is a group.

Keep in mind that a subgroup is still a group. The only difference is that this group lives inside a
bigger group. However, do keep in mind the importance of following through with the same binary
operation.

Consider (Z,+). This is a group. However, let’s take H C7Z where H is the set of all odd integers.
This subset is not a group under the binary operation +. So not every subset of another set is also
a subgroup.

Result: Group (D, ). Assume H C D, H is a finite subset of D. D can be any group, but H
MUST be a finite subset of D.

Then: H < D. This notation means that H is a subgroup of D. H < D iff (H,") is closed. i.e. the
subset has closure. We only need to check closure out of the 4 axioms, because the other three
(identity, inverse, associative) are automatically correct because of D.

Proof: Assume (H,-) is a subgroup of D. Hence (H,-) is closed. This is iff relation, so the first
direction is given. We need to prove the second direction.

Assume (H,-) is closed. We show that H < D (i.e. H is a subgroup of D). We simply need to
show that H is a group since it is already a subset of D.

1. (H,") is closed by our hypothesis;
2. (H,-) is associative, and (D, -) is associative because it is a group;

3. We want to show for (H,-) that e€ H and a~'€ H Va € H. We do this in one step. Let
us show this.

Choose a € H. Start forming a,a?, a3, __ a™ All of these are in H because H satisfies the closure
axiom. We cannot keep this going forever because H is a finite set. At some point, you will repeat
some elements.

k

a™=a" forsomem >k



At some point we have a™ = a* for some value of m and k. We can assume that m > k.

We can see that a* has an inverse. To proceed, we do the following:

=a%.a*=e Binaryoperation a~* on both sides

am—k— gk gk

a'm—k: e

a—k -a™

Since m > k, by closure we can see that ¢ %€ H, and we also know that ™ *=e, thenec H. We
can now see that the identity, e, is in H. Now, how do we come up with the inverse at the same time?
Firstly, we can rewrite a™ ¥ as a-a™ %! (Simple rule of exponents).
a-am P l=¢
we know that a™ % € H , so:
am~k=le H (Closureunder )
To have an inverse means:
a-(x)=e wherexistheinverse
Weseenow thata - (a™ k1) =e
andz = (a™~F~1)
Therefore (a=1) = (a™*~1)

We can now see for some a € H, a~! exists. Furthermore, we can see that a=! € H. We don’t need
to prove these results again, but we definitely need these results as tools to do other things. We
will see this in the first homework.

September 9th, 2020

Last result from last lecture: If we have a group and we have a finite subset of this group then the
subset is a subgroup iff it is closed.

Example: (Z,+), E = {Set of all positive even integers, including 0}. Clearly we can see that E C Z.
Is (E,+) a subgroup of (Z,+)? First thing to note is that E is infinite here. The set of all positive
even integers is still an infinite set, as it is not “smaller” than the set of all integers. However, it is
also a subset of Z.

By observation, we can see that (F,+) is closed under addition. However, we can see clearly that
(E,+) does not have an inverse. So the inverse axiom fails since E only contains positive integers.
We don’t want to think that subgroup is any different to a normal group - the only difference is
that the set for a subgroup is a subset of a bigger set.

Therefore, we can conclude that if we remove “finite” from the result / hypothesis introduced in last
class, then we have to treat it like normal and cannot simply count on closure. The conclusion of
the hypothesis could be right or wrong (because the hypothesis depends on our subset being finite).

Now, is (F,+) a subgroup? No. It is not a subgroup of (%, +).

However, let E = {Setofall evenintegers,including0}. This is clearly an infinite set that is a subset
of Z. Is E a subgroup? Yes! Because if we go through the 4 axioms, it satsifies all of them, even
though it is not a finite set. We no longer depend on the hypothesis in this case - we go through
the normal procedure of seeing if a set is a group.

Result: (D,-) is a group and a € D, s.t. |a| =n < oco. Then:

H= {a7a2a aS’ a'n(:e)}



is a subgroup of (D, ), and the cardinality of H,|H|=mn. [Cardinality = size of a set]

For example, if we have an element of order 5, then we can come up with a subgroup with 5
elements, and if we have an element of order 50, we can come up with a subgroup with 50 elements.

How do we prove this result? Since H is a finite subset, we can simply show that H is closed under
- and hence conclude that it is a subgroup of (D, ) by our previous result.

H= {aaa2aa37 ) an(:e)}

Let z,ye H. Showthatx -yeH
r=a’, y=a* 1<i,k<n

z-y=a' ab=q'tk

We need toshow a’** ¢ H
i+k€Z, i+k=cn+r (Bynumbertheory)

0<r<n

qith — gentr

=a"-a" = (a")°- a”

(a™)*=e, sowehavee-a”

ifr=0: a'"=ecH
ifr#£0: a"€H Dbecause0<r<n

Hence, H is closed under -, and therefore it has to be a subgroup of (D, ), because it is finite.
These things should stay in your mind.

What about if our set is infinite? How do we check for this? Do we need to go through all 4 axioms?
Let us see.

Result: (We can use this result in general, but usually we just use it if H is infinite) Assume (D, -)
is a group.

Then (H,-) is a subgroup of (D,-) iff a='-be H Va,be H. We can use this to see if a finite
subgroup od (D, -) as mentioned above.

(a,b) need not be distinct.

Proof: Assume H < D (subgroup of D) and a,b€ H. Then: a=!-b€ H, because H is closed and
both a~tandb e H (Since H is a group). This one operation can show us everything we need to
know about H being a group. This is trivial.

However, there is a second direction we need to prove.

Assume a=!-b€ H Va,bc H. Show that H < D. We saw what happens if we assume H < D, now
let’s see the other way around and prove H < D, while assuming a~'-b€ H. We need to show 3
out of the 4 axioms, except associativity.

1. (Identity)

let a € H, and chooseb=a

Hencea ! -b=a"ta=ceH

Therefore we can see that H has an identity.

10



2. (Inverse)

Leta€ H. Wehavetoshowa '€ H
a has an inverse, but we know it isin D.
We want to show that it isin H.
Chooseb=c€ H

Thusa !-b=a"'-e€c H (Byassumption)
al-e=alcH

Therefore, each arbitrary element in H has an inverse that is also in H.

3. (Associativity) This is clear because H C D.

4. (Closure)

Leta,be H. Showthata-be H
Remember our assumption: a ' -b€ H
a*e H By(2)
Sincea='€ H,then(a=1)"!-b€ H By our assumption
This may be a little tricky to understand, but we simply need to consider our assumption and the
fact that a=! € H by (2.). Therefore, we can clearly see that H is closed.
So, simply put, H is a subgroup of D, and this can be used for both finite and infinite subsets.

End of proof

Symmetry group of equilateral A:

Let us consider a rotation:

f1=Rotate A about center 120° clockwise

a b c
fl:(bca)

ie.

11



Let’s take another rotation:

fo=Rotate A 240° clockwise

a b c
f2:<cab)

The indentity rotation:

f3 = e =Rotate 360° clockwise

abc
fs:a(abc)

a

Now let us consider some reflections. Consider the following:

a

b

f1=Reflection about vertex a

a b c
f4:<acb)

12



Another reflection for us to consider:

f5=Reflectionabout b

a

o
S o

i

ISEE
N——

A similar thing is done for fgs, which is a reflection about c.

a b c
fﬁ:(bac)

Now let us see all the rotations:

a b c abc abc abc a b c abc
{f1'<b c a)’f2'<c a b>’6'<a b c)’f4'<a c b)’f5'<c b a)’f6'<b a c)}
You view each as a function as such:

K:{a,b,c} —{a,b,c}

For fi:
K(a)=b, K()=¢, K(c)=a
This is clearly a finite set. Our binary operation, -, are the compositions, o. We can do the Cayley

table for this finite set to see whether it is a group or not. We all this group of 6 elements the
symmetry group of equilateral triangles.

13



Remember compositions and composite functions from Calculus 1. Let us take:

abc
f10f5<a . b)

Note that f10 fs= fi(f5). This is another tricky thing to notice, but it is very doable if you look
over it again. We take the first one, go to the second one, then come back to the first one and see
the corresponding value.

fio fs= fa— Thereis closure.

To see everything else, then we can use the Cayley table. The symmetries of an equilateral triangle
form a group. It is in fact a non-Abelian group with 6 elements. Let us see the Cayley table to
cement this idea (Covered in homework 1).

° fi fo fa=e fi f5 fe
fi
fo
fs=e
fa
fs
fe

Table 3.
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Cosets:

Take (D, ) as a group, (H,-) (same binary operator) is a subgroup of D. Let a € D. Then:
a-H={a-h st. heH}

This set is called the left coset of H. We can also consider the right coset, the definition is self
explanatory, but traditionally we will take the left coset. H-a={h-a s.t. he€ H} (Right coset).
If the group is not Abelian, we know for sure that a-h=#h-a. Remember this fact to see that the
left coset is different to the right coset.

Let us take (Z,+)=(D,-). If we then take (3Z,+)=(H,-), then we can easily check that (3Z,+)
is a subgroup of (7Z,-). Note that 37 is the set of the multiples of 3.

3% = { ) _67 _37 07 37 67 }
Select a,b € 37%. Show that a='-b€3Z, i.e. a~!+bec3Z. If we use this condition, we can see that
this is clearly a subgroup of (D, -).

Hence:

a=3n and b=3m forsomen,m €Z
a l=-3n
al-b=a"14+b
=—3n+3m
=3(—n+m)

Since we know that n,m € Z, then we know for sure that 3(—n+m) is a multiple of 3, and therefore
37 is a subgroup of Z under addition.

14



Now, let us see the following:

1+ 3Z is the left coset of 37
Infact: 1+3Z:{77577251745 75 107}
Note that 1¢ 3Z. Will 1+ 37Z be a subgroup? No. This is because the identity is not present in

this set, or rather this coset. In fact, for any (H,-), and for any a€ D,a ¢ H, a- H is NEVER a
subgroup of D. This is clear because e would never be in a- H.

Proof: Assume e € ¢- H. This means:

a-h=e forsomehec H
a-h-h l=e-p1!

a=h"1
This is a contradiction, because we assumed that a ¢ H.
(1+3Z2)N(3Z)=w
Let us take 9 € 3Z. If we take (94 37Z), we would have a left coset of 3Z. The observation here is that

if we select a € D and a € H, then we would not come up with a new left coset. It would simply mean
that: a- H= H. If we want to come up with a new left coset, we should select some a € Danda ¢ H.

Now, let us see (2 + 37Z), where 2 ¢ 3Z. Furthermore, 2 ¢ 1+ 37Z.
(2+32)={..,-4,-1,2,5,8, .}
(243Z)N(1+32)=92
That means that these two cosets of 3Z contain nothing in common. Furthermore, we have:
(2+32)N(3Z)=9

We have exactly three left cosets of 3Z. These are: 0+ 3%, 1 + 3%, 2 4+ 3Z. These are the only
distinct left cosets of 3Z. We can conclude that the UNION of all distinct cosets is the whole group.

(3Z)U(1+3Z)U(2+3Z)=Z

The intersection of any two cosets is &. Further, we can see that, for example, 4+ 3Z =1+ 37Z.
As a matter of fact, this is exactly where we get the modulo n function.

44+32Z=1+3+32)=1+3%Z
12+4+32=3-44+3Z=3%
What can we observe from this? Assume a- H is a left coset. Let us select bea- H.
b-H=a-H

Because of the fact that b€ a- H. We can demonstrate this with an example. For example, let
b=3€3%Z. Then b+ H=a+ H.

Let us take 57. Find all the left cosets of this subgroup. 0through 4 + 5Z. These cosets have
absolutely nothing in common.
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By the previous examples and demonstration, we can see that 7Z, contains numbers only from
Oton — 1. We can interestingly write the following:

Zs={12,13,26}

12=0inZs
13=1in%Z;
26 =2in Zs

We don’t have to deal with these bigger numbers because we know that those bigger numbers are
nothing but the smaller ones in any case. This is the beauty of the concept of the left coset.

Result: (D,-)is a group, and (H,-) is a subgroup of D.
l.a-H=H iffae H

2. a-H=0b-H for some a,be D iff b~'-a € H. This is how we know that two left cosets are
the same.

Proof:

a,beD and a- H=0b-H. Show that b~'-ac H.

a-H=0b-Himpliesa-h1=b-ho forsomehi, ho € H
Hence  a-hy-hy'=b-hy-hy'=b
This implies b_l-a-hl-hglzb_l-b:e
b=l-a=hy-hi' (Weeliminate hy)
Since H is asubgroup, then ho - hy ' € H
thenb~'-a€c H

Second direction: Assume b—!-a € H. Show that a- H=5b-H

If we want to show that two sets are equal;
a-HCb-Handb-HCa-H
Thereforea- H=0b-H

Let x €a-H. Show that x €b- H.

x=a-h forsomehe H
Sinceb='-ae H=b"1-a=hy forsomeh;e H
a=b-h
x=a-h=b-hy-h h-hieH
thereforeb-h1-heb-H
hencex €b- H
By symmetry, we can use the same argument
toshow that forsomeyeb-H,yca-H
y=b-h forsomehe H
bl-acH forsomeh,c€H
b=a-h!
y=b-h=a-hy'-h hi'-heH
a-hi'-heca-H
hencey €a-H
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Since both are subsets of each other, then a- H="5b- H.

3. Let a- H,b- H be two left cosets. Then:

Either a- H=b-H or a- HNb- H=&. Whenever we have two left cosets, either they are
the same or they do not have ANY elements in common. We observed this by the examples
we saw before.

September 16th, 2020

Recall the concept of left cosets.
H <D (Hisasubgroupof D),a€ D
l.a-H={a-h|heH}
2. If a¢ H, then a- H is never a subgroup of D, and it is never a group either.
3. Ifa,beD,a-H=b-Hif b'-acH
Result:
a,be(D,-) [H < D]
Then either:
l.a-H=b-H, or
2.a-HNb-H=0

Two left cosets of a subgroup are either a set or they have absolutely nothing in common (their
intersection is empty)

Proof: Let a,b€ D. Assume that a- H #b- H. We will then show that a- HNb- H = 2.

We proceed by contradiction:
rxe€a-HNb-H
ie. The intersection is NOT empty
risinbotha- H andb- H
rz=a-h; forsomeh;c€H
r=0b-hy forsomehsec H
=a-hy1=b-hy
=b"l-a-hi=b"1-b-hy=hy
b=l a=hy-hi!
hy-hite H
b=l-acH

The previous result showed us that a- H =b- H iff b=!-a € H. Therefore we can conclude that
a-H=b-H. We assumed that these two are not equal. If we assumed that the intersection is not
empty, then we have a contradiction. Therefore we have completed the proof.
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Result: Assume H < D,a€ D.
la-H|=|H|
In other words, the cardinality of the left coset of H is the same as the cardinality of the set H
itself. ie. if |[H|=n <oo,then|a-H|=n VYaeD
How do we show that the cardinality of two sets are equal?

Proof:
fiH—a-H

We need to show that this function is both one-to-one and onto, i.e. this function is bijective. H
is our domain and a- H is our co-domain.

f(h)=a-h
Letye€a-H yisintheco-domain
Theny=a-hy Forsomeh, € H
Hence f(h1)=a-h1=y

Therefore fisonto  (Surjective)

Now, to show injectivity:
Assume f(h1) = f(h2)
Show that h; = ho
=a-hi=a-hy a€D,soa 'exists
ala-hi=atla- hs
=h;=hy
Therefore fis1-1  (Injective)

Since we have shown that f is bijective, we conclude that the cardinality of H =cardinalityofa- H.
\H|=a-H|

The method for this proof is by taking a function from H toa- H and showing that it is bijective.
If our function is bijective, then the cardinality of the two sets are equal to one another.

Lagrange’s Theorem:

(D,-)is a group st |D|=n < oco. This is a group that is finite. Let H < D, and |H|=m. His
therefore, also finite. Then we can conclude the following:

m|n (misafactorn)

The converse:

Assume |D|=n < oo and m|n. We may or may not have a subgroup with m elements. Lagrange’s
theorem does not imply that every factor of nmust have a subgroup with that factor’s cardinality.

Ezample: If |D| =12 =n, then we may or may not have a subgroup of D with 4,6,2 etc. elements.
But if we definitely have a subgroup with m elements, then m should be a factor of n.

But when is the converse of Largrange true? When (D, -)is an Abelian group. The proof of this
will rely on furhter mathematics, but we can use this result anyway. In other words, we can say
that if Dis Abelian and |D|=n, we definitely have a group with m elements where m|n.
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D is Abelian. |D|=n < oo, m|n == 3 at least one subgroup H of D such that |H|=m.

Proof of Lagrange’s Theorem:

Let H=e-H,as-H,as-H, __ay-H be all distinct left cosets of H. Since they are all distinct,
this means that their intersections are empty, no elements in common. The left cosets of H are
also finite because we know that |D|=mn, and thus D is a finite set.

D=HUay-HUay-HU---Uar-H

|D|=n=|H|+lag-H|+---+|ai- H|. Each of our |a;- H|=m

Therefore, n=km, and thus m is a factor of n. This is the end of our proof.

Result: (D,-) is a group and |D|=n < oo. Let a € D, and |a| =m.

Then: m|n. How do we show that this is true?

Proof: Let H =a,a? a®, . ,a™=e. By class-result, we know that H < D and |H |=m. Hence, by
Lagrange’s theorem, we conclude that m|n.

Let |[D|=14. Assume a € D, a®>#e, a” #e¢, then |a|=14.

September 21st, 2020
Quotient Groups:

Let (D,-) be a group and H < D. H is a subgroup of D. We say H < D. This means that His a
normal subgroup of D. This is iff Va € D, a- H= H - a. This means that every left coset is a right
coset in common language.

This statement means Vh € D, Jw € H s.t. a-h=w-a. h does not necessarily have to equal w.
Similarly, it does not means that a-h="h-a (although this is true if our group was Abelian).

Furthermore, if (D, -) is Abelian, then every subgroup of (D,-) is a normal subgroup.
H<aD<=a-H=H-a YaeD

H<aD<=a-H-a~'=H VYaeD

Result: Assume (D, ) is a group and H <1 D. Then:

(D/H,«) (Quotient group), or D mod H , factor group

D/H={a-H|acD}
D/ H consists of all left cosets of H
x € D/ H,meaningz = a- H forsomea € D

Definexon D/ HstVa,ye€ D/ H,

rzxy=(a-b) - H,wherex=a-Handy=0b-H
Forsomea,be D
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We need to show that  is well defined on D/ H.

Assumea-H=c-H=x €D/H

b-H=d-H=y €D/H
rxy=a-b-H
rxy=c-d-H

Weneed toshowthata-b-H=c-d-H
This means that * does not rely

on how x or y are represented

By previous result regarding left cosets,
a-b-H=c-d-H<=(c-d)~t(a-b)eH

Notethat (c-d)"t=d~ 1. ¢!

Show that (c-d) =t (a-b) € H
dt.ct.a-beH
cliaeH (Sincea-H=c-H=c'-a€H)
d~'-h-b Forsomehec H
Since H is anormal subgroup of D
Thenb-H=H"b
Hence h-b=b-hy forsomeh;cH
d~t-h-b=d= 1 b-h
d~'-beH (Sinceb-H=d-H=d '-beH)
d=1-b-hi=hy hy
ho-hy € H Since H < D

Thus * is well-defined.

Result: (D,-) is a group and H <<D. Then (D/H,x) is a group with the identity e'=e¢- H = H.
eistheidentity of D inthis case, and e’ is the identity of D /H.

Proof:

(Closure)

x,yeD/H,x=a-H,y=b-H forsomea,be D
rxy=a-b-H
Since (D, -)isagroup,a-b€ D
Trivially, (a - b) - H isalso
another left coset of H
Since the - of two left cosets of H

result in another left coset of H

We conclude that D/ H is closed under *
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(Identity)

Letx e D/H,x=a-H Forsomeac D
xxe=a-Hxe-H eistheidentity of D
a-e-H=a-H

EXT =T

Therefore, H is the identity.

(Inverse)

re€D/H,showthatz=te D/H
r=a-H forsomea€D
z =1 H
zxx l=a-Hxa ' H
(a-aY)-H
=e-H=H eistheidentity of D
and H istheidentity of D/ H

(Associative)
This is clear since (D, ) is associative.

We are therefore done and have proven that (D /H, %) is indeed a group.

Let us take an example: (Z, +). We know that 5Z <1 Z. Since Z is Abelian under addition,
then 5Z is clearly a subgroup and further a normal subgroup.

5%2{5%,1+5Z,2+5Z,3+5Z,4+5Z}

This group has 5 elements.

Let us take two left cosets of Z. Let’s take 4+ 57Z and 2 + 5Z.
(44 5Z) % (24 5Z)=(64+5Z)=1+57Z

The * that we defined on our structure is simply addition mod n. Actually, studying quotient
groups is the reason why we came up with the idea of 5%, and all of modulo mathematics. The
correct name of 5Zisactually 5%.

Result: (D,-)isa finite group and |D|=n < co. Further, H < D.

|D/Hl|isa factor ofn

D/ H is a set of all distinct left cosets of H. This is a group if H is normal. How many distinct
left cosets will we have? It has to be a factor of n, or the order of the group D.

Proof: Assume H,as-H, . ,ar-H are all distinct left cosets of H, and |H|=m.
|D/H|=k,weknowthat |H|=|a;- H|Vne2<i<k

|D|=H|+[az- H|[+ -+ |ay- H|
=m+m+---+m

n=km

k|n
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Or in other words, k is a factor of n.

Since |D|=n,|H|=m, n=mk and |D/H|=k, we conclude that:

Example:

H<D,|H|=5

How many left cosets should H have by this result? We should have exactly % =6 left cosets.
This means that |D/H|=6, or in other words the cardinality of the set D/ H is 6 (comprised of
6 elements). This does not say that D/ H is a group though, since that would only be the case if
H is a normal subgroup.

September 23rd, 2020
Direct Sum (Product):

Definition: (D,-), and (F, x) (Not the same binary operation). The direct sum or product is:
H=DaoF={(d,f)|deD,feF}

H is the set of all ordered pairs (d, f) where d€ Dand f € F.

Result: (D, ) and (F, ) are groups (given). Then (H=D @ F,®) is a group with exactly |D| x|F|
elements. i.e. This group has as many elements as the product of the elements in D and F', where:

(d1, f1) ® (da, f2) = (d1 - da, f1* f2)

Y(d1, f1), (d2, f2) € H. How do we prove that the new structure is a group?
Proof:

(Closure) This is clear since D, F' are both closed under - and *. If we look at the definition, we
can see that the structure is a group since we never get an element outside of D, F'.

(Identity) ey = (ep, er). Why?

(d, )@ (ep,er) =(d-ep, fxer) = (d, f)

(Inverse) (d, f)~t=(d~1, f~1). Why?

(d. fled f)=(d-d"' f=f~")=(ep,ep)
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(Associative) Since both - and * are associative, then we can clearly see that @ will also be
associative. In other words, (D,-)and (F', ) both satisfy the associative property.

Question: Give me an example of a non-Abelian group with 60 elements.

Solution: If we let S5 be the symmetric group of an equilateral triangle, we know that this group
is definitely non-Abelian (from HW1).

H = (Z10,+) ® (S3,0)

Both (Zj0,+) and (Ss,0) are groups, and (Zj0, +) has 10 elements and (Ss, o) has 6 elements.

Therefore:

|H | =10 x 6 =60 elements

In S3, we have at least two elements, called s; and sosuch that s10 52 s20s1. Now we can see the
following in our new structure to determine whether H is Abelian or not.

(1,51) ®(2,52) =(3,s10802)
but:
(2,52)®(1,51)=(3,82051)
But we know that s1 0 59 # s90 81, so these two elements are not the same.
ie(1,81)®(2,52) #(2,82) @ (1, 81)
Therefore, clearly, we can see that (H,®)isnon-Abelian. Another example would be the following:

H= (Z25 +) 69(S35 O)

Then: |H|=12.

Result: H=(D,-)® (F,*). Then, Y(d, f) € H, what would be the order?

|(d, )] =lem (|d], [ f])

Proof:

Assume |d|=m, |f|=n
I(d, f)l =k

=(d, f)f=en=(ep,ep)
:(dka fk) = (eD;eF)
=d*=ep, ff=ep

mlkandn|k
Since m |k and n|k and k is the smallest positive integer s.t. (d, f)* = ey, we conclude that:

k=1lcm (m,n)
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Example: H = (Z4,+) ® (Z12,+). Find |(2,5)].

=lem (|21, [5])
20 =——=2
2 ged (2,4)
12
=—=12
15 ged (5,12)

=lem (2,12) =12

Therefore
(2,5)] =12
Recall that if we have:
la|=n
{aa 0/2, a/s.... 9 a/n = 6}

subgroup of D with n elements,

|a| =n = subgroup with n elements

but <=isnot always true

Take H = (Zo,+) ® (Z2,+). H is a group with 4 elements. Does H have an element of order 47 No.
In fact, |(d, f)| =2 when (d, f) #en.

Result: If we have H=(D,-)® (F,x*), choose A< D, B < F. Let us take:
K=(A,)®(B,x*)

Is this a group? Definitely. In fact, we can further see that K < H.

Question: H= (D, )® (F,*). Let L < H. Can we find a subgroup Aof D and a subgroup Bof F'
such that:

L=A&¢B

No. Not always. This means we can have a subgroup in this structure that we cannot write as a
direct sum of two different subgroups.

Ezample: Take H = (Za,+) @ (Z4, +). What is |(1,1)]?
[(1,1)|=lem (2,4) =4
We have an element of order 4. Can we construct a subgroup with 4 elements? Yes!
{(1,1), (1,12 (1,1)% (1, 1) =e}
={(1,1),(0,2),(1,3),(0,0)}

This is a subgroup with 4 elements. However, this set £A @ B, where A < Zsand B < Zy.

September 26th, 2020

Common Knowlege in Number Theory:
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Question: If we are given a set D ={a|l <a <nandged (a,n) =1}, then what is the cardinality of
this set? If the gecd of two numbers is 1, then they are said to be relatively prime.

|D|= ¢(n)
How do we calculate ¢(n)?
n>1
n=pit-py*oc. P

This is the prime factorization of n,

and p1, p2, ., pxaredistinct
p(n)=(p—1)p" " (p2— 1)p3> =" (e — Do

Let us take an example. Choose n="74.

n=74=2-37

=21.37!
o(n)=(2-1)2°-(37—1)37°
=36

What is the meaning of this number? This is the cardinality of D where
D={a|ll<a<nandged(a,74=1}
There are exactly 36 numbers between 1 and 74 where each one of them is relatively prime to 74.
We can also take another example.
n=32-5%.74
n=2°.5%.7*  Prime factorization
p(n)=2%4.52.6-7
o(n)=|D|where D ={a|]l <a<n,andged (a,n) =1}

Question: Let n> 1. Choose k|n. It is possible for k to be 1. k#n. k can be 1 or any other factors
of nexceptn.

M={a|ll<a<nandgecd (a,n)=k}
M= (%)
Let us take an example: n=232-3°=25-3% and k=6. k|n.

M ={a|l <a<nandgecd (a,n)=

|M|=<P(%>n 90(_ )

4

A(3)-wev

What is ¢(primenumber)? n — 1. This means that if we have a number, n, that is a prime number,
then the prime factorization of that number, p(n)=n— 1.

Fermat’s Little Theorem:

Assume ged (a, p) =1, where a € Z™ and p is a prime number. Then:

pla?~t -1
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Another way of saying this is that (a?~!)mod p= 1. If we take a number, a, that is relatively prime
to p, and we divide by p, the remainder is going to be 1. Why is it little? Because we will get the
bigger one later.

Notice that p — 1= ¢(p)

Fuler’s Result:

n€Z' and a € Z" st ged (a,n) =1. Then we can see that:
a?™(modn) =1

This is the same as Fermat’s little theorem, but it is more general.

Result:
(Z, x)isa groupiff nisprime

Proof:

Assume (Z},, x) is a group. We show that n is prime

=

We proceed by contradiction. Assumethatn=m#k,1<m,k<n
Sincemandk € Z;,, mk=n=0¢€Z,
This is our contradiction, since 0 ¢ Z;,

Therefore n hasto be prime

Assume n is prime, show that (Z,, x) is a group
<——

Associative property is clear.
e =1, therefore we have the identity e € Z7,

Closure:

Leta,be Z},. Show thata x b € Z;,
Proceed by contradiction to see that
axb=0€Z;,=—a=00rb=0

This is our contradiction since a, b € Z;,

Inverse:

Let a € Z;,, since ged (a,n) =1,
By Fermat’s Little Theorem,
an—l(

axa" ?=1€7Z,

a l=a""2c7Z;

modn)=1

So we have shown that if n is prime, Z,

(Z33, x)is a group, as an example
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Result:

Define n > 1. Then U(n) ={a|l <a <nandgecd (a,n) =1}. This is clearly a subset of Zj,. ie
U(n) CZ;,. If our n is a prime number, then U(n) = Z;,.

Result:

(U(n), x)is an Abelian group

Let us take an example, say (Zis, x). This is clearly not a group since we know that 15 is not
prime. However, can we find a group from it:

U(15)={1,2,4,6,8,11,13, 14}

We know that ¢(15) =8, which matches the number of terms we found in U(15). Therefore:
(U(15), x)isagroup

How do we prove this result?

Closure:

a,beU(n)

since ged (a,n) =1and ged (b,n) =1
ged (@ x b,n) =1, and hence

a x b(modn) eU(n)

Identity:
e=1eU(n)

Associativity is also clear

Inverse:

acU(n)

Since ged (a, n) =1, by Euler’s theorem:
a¥*™(modn)=1

Hencea x a?™~1=1€U(n)

The inverse of @ = (") ~1

Let us take (U(30), x), this is a group, but for the same number, (Z3,, X) is not a group. Further-
more, we can see that:

U(30)] = ¢(30)
30=2-3-5

0(30)=1-2-4=8
Therefore U (30) has 8 elements
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Question: Imagine (D, ) is a group. We select a € D and |a|=20. 20 is the smallest positive integer
where if we do - on a 20 times, we get the identity.

How many elements of order 20 does H have?

k| = ﬁ =20. This means that ged (k,20) =1, and 1<k < 20. This leads us to

the conclusion: H has exactly ¢(20) elements, each of which have order 20. Furthermore, D has
AT LEAST ¢(20) elements of order 20.

Solution: |a

How many elements in H of order 5 (Since 5 is a factor of 20)7

20
k = —————
™l = ged (K, 20) g

—ged (£,20)=4,1<k <20

From the beginning of the lecture, we know that this value is cp(%) = (5) =4. Now, how many
elements in H have order 107
20

k ==
"1 = ged (K, 20) 10

ged (k,20)=2,1<k <20

@(%) = ¢(10) (From earlier result)

Definition of a Finite Cyclic Group:

(D,-) is a finite group with n elements (n < co). We say that D is a cyclic group iff D has an elmenet
a where |a|=n. i.e. D={a,a? a3, . ,a"=e}. If we have an element of order n, we can generate
the whole group fom this one element. This means that each element in D is some power of a.

September 28th, 2020
Finite Cyclic Groups:

Def: We have (D, ), which is a finite group, and |D|=n < oco. If 3a € Dst |a| =n, then we say that
D is a cyclic group. In notation, we say that D = <a >. The order of a is n and we can write D as:

Do we have any examples of groups that are cyclic?

(%, +) is cyclicfor alln > 2

This is because of the fact that:

1| =nin (Zn,+)
(Zi, +) is generated by 1, ie (Z,, +) =<1 >
={1,1%,1%, 1}

={1,2,3, ..,0=¢}
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Question: Find all generators of Z,. What do we mean by generators? D =<a >, Dis cyclic and
is generated by a. Therefore:

D = {a’7a2’ a’s’ ....an}

We know that 1 is a generator of (Zy,+). Is that the only one? How many can we find other than
1?7 What is the process of thinking here? Another way of looking at this is how many elements in
Zy, are of order n? To know all the generators, we need to know all the elements of order n.

(Zp, +)=<1>

Assume (Zy,, +) = <a >
=<1F > wherea = 1¥

Hence |a| =n

TRt |
lal =11 |7gcd(k,n)7n

In other words, ged (k,n) =1
ie|a| =niffged (k,n)=1

Result:

(%, +) has exactly p(n) generators

This means that it has exactly ¢(n) elements, each of which is of order n. To continue with this,
let us take an example:

Find all generators of (Zzo, +)

Obviously, one of themis 1
3=1%and ged (3,20) =1
ged (7,20)=1

etc ...
1,3,7,9,11,13,17,19

Therfore, (Z,,+) =
<l>=<3>=-.-=<19>

How many generators do we need to have?
©(20) elements, and ©(20) =8

Theorem about Cyclic Groups:

Assume that (D,-) is a cyclic group, and |D|=n < o0.

1. Let m|n,then D hasexactly ¢(m) elements, each is of order m
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Proof:
Since (D, -)iscyclic, Ja € D
stla|=n,ieD=<a>
:{aa a25 a37 e an}

Therefore D = <a > ={a, a?,a®, ., a"}

Let m|n,andletbe D
Hence b= a*forsome1 <k <n,andb+e

pl=—lol
1] ged (k,n) mn

n
|b|_gcd(k,n)_m
Therefore: gcd(k,n):%
and1<k<n

=—we know that we have exactly ¢ % =(m)
‘m
elements, where ged (k,n) = pree

This means that D has exactly ¢(m) elements, each is of order m.

Result from number theory:

n=> " o(d)

d|n

As an example, we can take n=15. 15 = (1) + ¢(3) + ¢(5) + ©(15), and ¢(1) =1by default

Proof:

Consider the cyclic group (Z,, +)
Let d|n
We know that (Z,, +) has exactly ¢(d) elements

each of order d

Assumethat1,dy,do,  ,dp=n

are all distinct factors of n
(1) +¢(d1) + p(d2) + -+ p(n)=n

For each divisor d of n, we have p(d) elements

Therefore, Z o(ld)=n
dln

As an example, let us take n=300

300=") " o(d)

d|[300
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2. (D,-) is a cyclic group and |D|=n. If m|n, then there exists a unique subgroup of D with

exactly m elements.

For example, if we have a group (D, -)and |D| =30, then 3 exactly one unique subgroup
with 6 elements, since 6/30. The same follows for other factors of 30.

Proof:

We use the fact that

every subgroup of acyclic group is cyclic.

Letbe D, |b|=m
Hence <b>={b,b% b3, . b"=e}
is a subgroup of D with m elements. We proved thisin (1)

We show that < b > is unique.

Assume D has another subgroup,

H st|H|=m

We show that H = <b>.

Using the fact that H iscyclic,ie H = <c¢>,|c|=m

<b > hasexactly ¢(m) elements of order m

We proved that D has exactly ¢(m) elements of order m
These two statements give us the conclusion:

Every element in D of order m must "live” inside < b >

H=<c>and|c|=m
ce<b>
therefore: <c¢>=<b>

(We will prove this later)

Note that every cyclic group is Abelian. If our group is not Abelian, then it will never be

cyclic.

Proof:

Since D is cyclic,
D=<a>zx,yeD

x:ak,y:a"”
x.y:ak.am:ak+m

k+m _ a'm—i—k

a ,thereforex-y=y-x

Therefore, D is an Abelian group

Cyclic Groups:

(D, ) is finite cyclic and we know that |D|=n < oo.

1. Disan Abelian group
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2. If m|n, then D has a unique subgroup with m elements
3. If be Dand|b| =n, then D={b,b? . ,b"=e}

4. Dhas ¢(n) elements each of order n

Def: We say that a group, (D, -) is an infinite cyclic group, ie D =<a>,a€ DiffVbe D,3In €
Zistb=a".

Result: (D, -) is cyclic, where it could be finite or infinite cyclic. Let h < D. Then H <D and H
is cyclic.

Proof:

Since D is Abelian, it is clear that H <D (H is a normal subgroup of D). We now also need to
prove that H is cyclic.

Since D is cyclic,

D =<a > forsomea € D

Letm=min {ila’€ H,i>1}

Claim H is generated by a™,ie H = <a™ >

Let h € H. We show that h = (a™) k for some k € Z
Since D=<a>andh €D,

h = a" for somew € Z

We show that m |w. We are done after that
Hencew=mk+r,where0 <r <m

The next step is toshow that r =0

he€ H,h=a"=amt"=gmk. q"

a™* € H it has an inverse

—mk —mk  ,mk

a a¥=a -a r

a
:aT
a~™*. ¥ ¢ H, andthereforea” € H,0<r <m
Since m is the smallest positive integer st a € H,
we conclude that r =0. (e’ =e € H)

=h"k = (a™m)k

—H=<am>

Result: Assume (D, -) is an infinite cyclic group. D has exactly 2 generators. Namely, if D =
<a>and D=<b>, then b=a~!. All other elements of D will not generate D.

Disinfinite cyclic=3la€ Dst D =<a>=<a"'>

Why is this true for the infinite cyclic group?

Proof:

32



Assume (D, ) =<a>. We show that D=<a"!>

Letbe D, henceb=a" for somen € Z
a"=(a"YH)™" —neZ
=b=a"€<a'>
—=<a>=<a"'>=D

Now, we assume D = <b >, whereb# aandb+#a~'. We will reach a contradiction, where we can
see that b must equal a.

Since D isinfinite cyclicand D = <a >,

we conclude that |a| = 0o

Sincea€ Dand D=<b>,Im € Zsta=>b"
Also,sincebe Dand D=<a>,In € Zstb=a"

a=b"andb=a"=— a=a™"™

a-a lt=ag"m.q=1

e = an'm—l

=—>nm — 1 must be 0, otherwise |a| < oo, contradiction

nm—1=0nme%

n=1lm=1lorn=—-1,m=-1

ifn=m=1,b=a,whichisagain, a contradiction.

ifn=m=—-1,b"'=a"!= b=a, whichis acontradiction
Hence D has exactly 2 generators, and it cannot have any other generators other than one element
and its inverse, as proven above through contradiction.

Ezxample of an Infinite Cyclic Group:
(Z,4)=<1>=<1"'>=<-1>

This clearly shows us that 1 and —1 are the only two generators of Z.
Let n€Z,3m € Zstn=1"=1"=m, and thusm =n. Similarly, n=(—1)".
Example of an Infinite Abelian group that is NOT cyclic:
(Q, +) — isan Abelian group that is not cyclic
The same follows with (R, +)and (C,+). We could even look to Q1 in HW?2, which is the power

set of a set D. This is a finite Abelian group that is not cyclic.

How do we convince ourselves of this?

<

(Q,+)

— a9
)
ged (a,b) =1
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We can always have more rational numbers that are not generated by our “generator.”

Let D =746 Z
b)la € Zyand b € Zg}
= (a1 +4a2,b1+6b2)
(a,b)|=lem |al, |b]]

D={(a,
(alv bl) ) (a’2ﬂ b2)

D isnot cyclic, but it is Abelian
(Z4, +) is cyclic because (Z,, +) is cyclic,
(Z, +)=<1>

ID|=6-4=24
D hasno elements of order 24
because lem (4,6) =12

<(1,1)>€Zs® Zs
(1, 1)} =lem ([1, [1])
=lcm (4,6) =12

We will prove in the next homework that Z,, ® Z,, is cyclic iff ged (n,m)=1.

D=H&K,|D|=|H|x|K|

October Tth, 2020
Definition of a Symmetric Group (Permutation group Sp):
Let Sbe a finite set with n elements. This means that S={1,2,3 . ,n}. Let f: S— .S be a function
such that f is bijective (both 1-1 and onto). Then:
S = The set of all bijective functions from S to S
We can see that (S,,0) is a group. In fact, this is a non-Abelian group. How can we show this?
Consider the following:

Closure: If we do the composition of two bijective functions, we will very obviously end up with
another bijective function. This means that we have closure in this set.

Identity: Let e=identity map|e(i)=¢ Vi€ S. This means that e:S—S.

Invertibility: If a function is bijective, meaning that it is both one to one and onto, that means
that it is invertible. We know this result from Calculus I.

Associativity: This is clear and obvious.
w € S, means that w: S — S, wis a bijective function and |S|=n

How do we write elements in S,,?

Let a € S5. Then:
o 12345
“\43152
The top line is the domain of the function, and the bottom line is the co-domain. In other words,

we can see that a(1) =4,a(2) =3,a(3)=1,a(4) =5,a(5) =2. This is a bijective function, as we
mentioned before.
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What is |Sy|?

1 2 3 n
< n possibilities n — 1 possibilities n — 2 possibilities 1 possibility )
|Sn| =n!
The symmetric / permutation group has exacty n! elements. For example, |Sy| =4!=24,|53| =3!=6,

and so on.

Let a=(1 4 5)€.S5. This is a bijective function where a is a 3-cycle.
p(12345
‘\42351

The elements cycle through to what they have been assigned. 1 goes to 4, 4 goes to 5 and 5 goes
to 1, while the elements that were not mentioned in a simply map to themselves. This is obviously
a bijective function. This is a short-hand notation for the functions in the symmetric groups. Let
us take another example:
123456 ..
a=(25 3 4 )eSg,thenf.< 154936 ).Th1s1s4cycles

How do we find the order of a cycle? Consider a=(2 3 7)€ S7. This is again, 3-cycles. Note the
following:

af =3
Now take the following:

aoa=(2 3 7)o(23 7)=(273)

aocaoa=(273)0(23 7)=(2)(3)(7)

This is the identity map, because every element maps to itself.

How does this work? We go from RIGHT TO LEFT. For example, in (2 3 7)o(2 3 7), 7 maps
to 2 and 2 maps to 3, therefore 7 maps to 3. 3 maps to 7 and 7 maps to 2, so 3 maps to 2. We
proceed in the same manner. Always go from right to left to see what each element maps to w.r.t.
the other cycles.

Fact: If we have an athatism-cycle in S,,, then |a| =m. Quickly, let us take an example:
Oé:( 137911 )6512

Then clearly and quickly we can see that «is5-cycle, and therefore || =5. This means that the
minimum number of times we need to permute « with itself to get the identity function is 5 times.
That’s it. We cannot do it any less times. But what if we don’t have the cycles?

Result: Let f€S,,. Then f can be written as a composition of disjoint cycles. Let us first start
with an example:

123456 .
f'<3 5124 6)656>f15n0tacycle
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Then we can see the following:
f=(13)0(2 5 4)

This uses the fact that the set is finite. How do we think of this as a function? Each element is
a bijective function in the set of Sg. The two cycles have nothing in common. We can generalize
this to be the following:

a=(a1 ay a3 . ap)

B=(b1 by b3 .. bm)

We say that «, § are disjoint cycles iff a; # b, V1 <i<kandV1 <w<m.

Let a=(1 4 7)and S=(7 3 2). Obviously, aand 8 are not disjoint because there is a repeated
element, 7. || =3=|3|. This is a bijective function.

12 8
f:<42 7)

What can we write f as? f=(1 4 3 5)o(6 8 7). That’s it. We have written the function as the
composition of two disjoint cycles.

Example:

34567
53186

Result: o, § are two disjoint cycles. Then we can say that ao f=[oa.

First, consider s, where s ¢ cand s ¢ 3. Then awo 3(s) =s, and Soa(s)=s. The other cases are as
follows: s € aand s ¢ (3, in which case we have the following: (a0 8)(s) =a(B(s)) =a(s). If we take
(Boa)(s),wewould get B(a(s)) =a(s).

Similarly, if we have s ¢ aand s € 3, then (a0 8)(s)=a(f(s))=B(s)and (Soa)(s) = B(a(s)) = 5(s).
This case is the same as the previous, by symmtery.

Result: Let f € .5,,. Weknow that f =aj0ag0 -+ oy of disjoint cycles (each «; is a bijective
function, but written as a cycle). Then:

| fl=lem (Jaal, [azl, ..., |ou|)

Why is this true?
Proof:

Find the smallest positive integer, m, st f™= fo fo fo---o f =e. This is repeated m times. We
already know that: f=cajo0as0 - oay. let m;=|ay|, for1 <i<kandm=|f|. Each m;lm. We
need to find an integer that is divisible by each of our m;, and this by definition is the lcm.

m =lem (my,ma, ., mk)

Example:

(=20
=~ Do
co w
[SLETEN
= Ot
N D
w

7

~ o
N———

36



We want to find | f|. The first thing we do is write f as a composition of disjoint cycles.
f=(16245)0(38T7)

We have written f as the composition of two disjoint sets, and thus it is easy to find the order of
f. We simply note the following: | f| =1cm (Jai], |az|) =lcm (5,3) = 15. We are done.

October 12th, 2020
Definition of Even Permutations:

Let f€5,. fis called an even permutation if f = composition of an even number of 2-cycles. For
example, let us take:

(123)=(13)o(12)

This is an even permutation, or an even function. This is true because we can take our f and write
it as two 2-cycles.

Result: f€5,,. Assume f=composition of an even number of 2-cycles. Then if f=compositions
of 2-cycles, then the number of the 2-cycles is an even number. If we write f as the composition
of an even number of 2-cycles, when we rewrite and try to find another composition of 2-cycles,
the number of 2-cycles stays even. We can never write f as an odd number of 2-cycles, but it is
definitely not unique either.

Fact: If we have some (a; a> as . am ), then we can say the following (for an m-cycle):

(a1 az a3 ... am)=(a1 am)o(ar am-1)o(ar am_2)o---o(ar a)

This is a way to write an m-cycle as a composition of 2-cycles.

For example, let us take the following example:
a=(2 3 6 8)€Ss. Iscaneven permutation?
a=(2 8)o(2 6)o(2 3)

We have written « has the composition of 2-cycles, but the total number of 2-cycles is 3. This is
an odd number, and therefore « is not an even permutation.

Note: The identity map, e, is an even permutation conventionally.

Fact: Let a be an m-cycle. If m is odd, then « is an even permutation. Moreover, if m is even,
then « is an odd permutation.

Proof:

(m1 mg m3 . My )=(m1 mpy )o(my My_1)o---0(mg my)

In this case, we have exactly m — 1 2-cycles, and thus if m was even, we’d have an odd number of
2-cycles, and if m was odd, we’d have an even number of 2-cycles.
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But what if our function is not written as a cycle? Consider the following example:
1 3456
/ ( 151326 )656

Then we can rewrite f as the following:

(G200 W)

f=(143)0(25)

Then we expand the 3-cycle to be the following: (1 4 3)=(1 3)o(1 4). And thus, f becomes
the following:

f=(13)o(1 4)0(2 5)

This is 3 (odd number) of 2-cycles, which means that f is not an even permutation, because we
used 3 2-cycles.

Result: Let n >2. A, is a subgroup of S,,, where A,, is the set of all even permutations of S,,. How
do we need to prove this? Since we know that S5, is a group, then we need to only show closure to
see that A, is a subgroup, because A, is finite.

Proof:

Let f1, fo € A,. Hence f; =composition of an even number, n; of 2-cycles. Furthermore, fo=
composition of an even number, no, of 2-cycles. Then:

f10 fa=composition of (ny + ng) of 2-cycles

The addition of two even numbers is an even number, which means that f; o fy will stay in A,.
Therefore, we know that A, is closed under the binary operation o, and therefore it is a subgroup.

Result: |4,] :%!. Recall that |S,| =n!, this result proves that half the permutations of S, are
even and the other half of them are odd. How do we convince ourselves of this?

Proof:

Let |Ap| =m. We want to show that:

Form (1 2)0A,,. This is a left coset of A,,. Let us call it F'. This left coset is not the same as A,,.
This is because (1 2)¢ A,. Claim that F =set of all odd permutations. We only need to show
that F'=(1 2)0 A, is the set of all odd permutations of S,,.

Let f be an odd permutation
Show that f € F
f=(1 2)o0k

=(1 2)o(1 2)of
(1 2)=e¢
—cof=f

wherek € S,

k=(1 2)o fisanevenpermutation
=f=(1 2)ok,keA,
=feF
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This means that every odd permutation lives in F.
Sp,=FUA,

We know that |A,|=m=|F|, and so |S,| =m +m =2m =n!. Therefore:

We have also established that A, has exactly two left cosets. One is A, itself, and the other is the
set of all odd permutations.

Result: Let (D, ) be a group, and H < D, meaning that H is a subgroup of D. Assume that
%: 2. In this case, H < D. This means that H is a normal subgroup of D.

In fact, %: [H: D], and is called the index of HinD. [H: D] =number of all distinct left cosets

of H. This is the same as the number of all distinct right cosets of H.

We need to show that if [H: D] =2, then H < D. In street language, if a set has exactly two left
cosets, then it is a normal subgroup of D.

Proof: Since %: 2, then H has exactly two left cosets, say a- H, and it also have 2 right cosets,

say H -b. Then we know that:
D=HUa-H VYa€eD\H
We also know that:

D=HUH-a YacD\H

We need to show that a- H=H -b Va,be D. If a € H, then there is nothing to prove since
a-H=H-a. Now let us take a outside of H, ie a € D\ H. We show that a- H=H - a.

SinceD=HUaq-HandD=HUH-b
We conlcudethata-H=H -a

We can also show this graphically:

This implies that the two regions of a- H and H - a are the same, beacuse inside of D, H remains
the same in both graphs.
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Result: Linking this back to our previous discussion, we can conlcude that A,,<1S,,. A,isa normal
subgroup of S,,.

Proof:

n!
| An| =5 |Sn| =n!

_ A4
|5l
= A,, < 5, by our previous result

[Ap: Sp] =2

Therefore, in addition to A,, being a subgroup of S,,, we also know now that it is indeed a normal
subgroup.

Definition of the Center of a Group:
Let (D, -) be a group. Then the center of D, denoted by C(D)or Z(D) is given by the following:

C(D)={a€Dla-b=b-a VYbeD}

In street language, we can see that the center of D is the set of all elements in D that commute
with every element in D. There are some elements in the group that commute with all elements
in D, and these elements are called the center of D.

Note that if D is an Abelian group, then the center of D is simply D itself, because every element
commutes with every other element.

Take S, withn > 3. Our claim here is that this group is non-Abelian. How do we prove this?

Proof:

(1 2)=aand(1 3)=p€S, n=3
Let us calculate o 3
aofB=(12)o(1 3)=(13 2)
Let us calculate G o«
Boa=(13)o(1 2)=(12 3)

Clearly these two elements are not the same and this is enough to show that .S, is non-Abelian
when we have n > 3.

October 14th, 2020

Recall the definition of the center of a group. Note again that if a group is Abelian, the center of
a group is the group itself. ie.:

C(D)=D

This means that the center of the group is mostly only interesting for non-Abelian groups. Now,
we proceed with the following result:
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Result: (D,-) is a group. Assume that a-b="5-aforsomea,b€ D. Then we have the following
result:

a l-b=b-q7!

This means that if a commutes with b, then the inverse of a would also commute with b.

Proof:

We know that (a-b) "1 (a-b) =e
b=t.a7l - (a-b)=e
b=l.a=t-(b-a)=e

(b=t-at-(b-a))-at=e-a?
=b"t.a7 - b-e=a"!
b-(b=t-a7t-b)=b-a"!

=a1l.b=b.-q7!

Therefore we have shown that:

a"l-b=b-q7!

Result: Assume that (D, ) is a group. Then we can say that C(D) is a subgroup of D.

Proof:

Leta,be C(D)
We want to show that a=1 - b € C(D)
Sincea € C(D),a"' € C(D)

This is by the previous result, proven above

Lethe D
Then(a=t-h-b)=a 1 -h-b=a"t-h-b
=h-a=!-b

(a=t-b)-h=h-(a"1-b)

This means that since h is randomly selected in D, and since it commutes with a=!-b, then we
can conclude that:

a~t-beC(D)

Result™: Let (D, ) be a group. Then the center of D, C(D) is a normal subgroup of D. This is
a + because we expand upon the previous result.

Proof: We already know that C(D) < D. Let a € D. We will show that a-C(D)=C(D)-a.
Since each element in C'(D)

commutes with each element in D,

thenC'(D)-a=a-C(D)
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Result: Let (D, ) be a group. If D/C(D) is a cyclic group, then we conclude that D is an Abelian
group. If the left coset of the center of D is generated by one element, then the original group has
to be Abelian.

Proof: Let z,y € D. We want to show that z-y=1y-x.

Since D /C(D) is cyclic, we know that:
JaeDstD/C(D)=<a-C(D)>
ie D /C(D) is generated by a left coset

Hencex-C(D)€[a-C(D)|* neZ
Because z - C(D) is aleft coset
and all left cosets are generated by a - C (D)

=a"-C(D)
Similarly, y- C(D)=[a-C(D)]™ meZ
=a™-C(D)

x=a"k ki eC(D)
y=a"-ky koeC(D)
z-y=a"-ki-a™ ks
~a™ k1 ko
moa™ ko ky
=a™-ky-a"™ -k

We established that D is an Abelian group.

Result: Let (D, ) be a group st |D|= ¢" where gisaprime. Then our result is that the cardinality
of the center of the group is greater or equal to gq.

IC(D)| >4

This is going to be covered in more depth when we consider Congruancy groups, but for now, we
can simply use it in exams and homeworks without having to know the proof.

Result: Let (D, ) beagroupst |D|= ¢? for some prime number, q. Then our result is that D is
Abelian.

Proof: By the previous result, |C(D)|= gor ¢?>. Why is this true? The order of the subgroup has
to be a factor of the order of D, which means that the only two possibilities for it are ¢ and ¢
since the previous result just showed us that |C'(D)| > g and ¢is prime.

If|C(D)| = ¢,

the center of D is the whole group

All elements commute with each other
D is Abelian
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Now we assume the other case:

[C(D)| =4

: D .
Since C(D) <1 D, )] isagroup

D ‘ __IDbl _
cm)|~ ey 1
Thus D /C(D) isa group with ¢ elements
Remember that ¢ is prime
=D /C(D)iscyclic
By a previous result introduced in this lecture,
if D/C(D)iscyclic, then D is Abelian.

Hence

Therefore, in either case, if we have the cardinality of a group being equal to a prime squared, then
our group is Abelian no matter what.

Result for those that are interested:

Weknow S3= D3

Consider the symmetry groupona 4 — gon
D,isasubgroup of Sy

|S4|=4!'=24,and |D4| =8

In general, we can have the following:

Let D,, be the symmetric group on ann — gon
Then |D,|=2n

Note that for an n-gon, the shape is divided so that each angle is divided equally from the center

of the shape. This means that each angle is equal to: % degrees.

360 360

Let us consider Dg. This means we are acting on a 6-gon. For the rotations, we have ==, ——

) 2n ) eean

and for the reflections, we have to draw them and see. However, overall we can see that we have a
total of n rotations and n reflections. In our case, Dghas a total of 12 symmetries. Furthermore,
we will never get out of this set. This is because the composition of as many reflections or rotations
is still going to result in a symmetry inside the set D,,

Definition of Group Homomorphism:

Let us consider the following function:

We say that f is a group homomorphism iff f(a-b)= f(a)x* f(b)Va,be D.

f:(D,)— (W,%),where (D, ) and (W, %) are groups

Group Homomorphism:

Def:

f(D,)H(F,*)

October 19th, 2020

is called a group-homomorphism iff f(d; - d2) = f(d1) * f(d2) Vdy,d2 € D. This is simply recalling

from the last lecture.
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Result:
f:(D, )= (F,*) is a group-homomorphism. Then we have the following results:

1. f(ep)=ep. The identity in D should map with the identity in F

2. fla)=[f(a)]"" VaeD

3. fa") =[f(@)" VneZ
fla-a-a-a----a)=f(a)* f(a)* f(@)* - * f(a)

4. Assume |a| =m. Then we can say that | f(a)| |m (the order of f(a) divides the order of a).
Furthermore, |a|doesnot need to equal | f(a)].

Proof(s):
1.
We show that f(ep) =ep
f(ep)= f(ep-ep)= f(ep) * f(ep)
Thisissince f is group homomorphism
flep)= flep)* f(ep)
Since f isa group:
f~Hep)*[f(ep) = f(ep) * f(ep)]
= f"(ep) * f(ep) = f~'(en) * f(ep) * f(ep)
Notethat f~(ep) * f(ep) =er
Therefore:
er=er* f(ep)
=/f(ep)
2.
We show that f(a=!)=[f(a)]~*
er=f(ep)=f(a-a™!)= f(a) fla™)
=[f(a)] "= f(a™")
3.

Weshow that f(a™) =[f(a)]* VneZ

Assumen € Z*
flam)=f(a-a-a-----a)
=f(a) x f(a)* f(a) *f(a)
:[f(a)]”

Now assumen € Z~

f@)=f(@ )™ =[[f(a)] ]
=fla Y *fla = fla - f(a™!) —ntimes

=[f(a)]"
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Assume|a|=m <ooand|f(a)|=n
We show that n|m
la|=m=a"=ep

er = f(ep) = f(a™) =[f(a)]™
[fla)]™=e

=n|m

nisafactor of m

f:(D")_)(Fa*)

Assume that f is a group homomorphism. The Kernel of f, denoted by ker(f) is given by the
following:

ker(f)={deD| f(d)=er}

ker(f) is the set of all elements in D that map to the identity of F', ep.

Result:
Given that f:(D,-) — (F,x) is a group homomorphism, then:

ker(f)< D

This means that the kernel of f is a normal subgroup of D. If D is Abelian, this is trivial.
Proof:

First we show that ker( f) < D
Leta,b€ker(f). Weshowa!-b € ker(f)
In other words:

fla=t-b)=ep

This is how we show an element is in ker( f)

Sincea, b € ker(f),
Fla)=F(b)=er

We know that f(a=!)=[f(a)]~*

Since f(a) =er, fla™) =ep' =er

Hence f(a=1-b)= f(a™1) x f(b)
=ep*xep=ep
=a~!-beker(f)

Therefore ker(f) < D

Now we show that ker(f) < D
(

ShowVbe D, b-ker(f ) ker f)-b
<=VbeD,b-ker(f) b~ =ker(f)
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Let x € ker(f)

Show that by - b~! = x for some y € ker(f)
Lety=b"1-2-b

Fly)= Fo~ o b) = Fb—1) = F(a) = (B
=f(b7) xep= f(D)

=f(b~ ) f(b)=ep

Checkif x=b-y-b~!

x=b-bt-z-b-b1

=z

—ker(f) Cb-ker(f) b1
Choosew € b-ker(f)-b~

Show that w € ker(f)

J

Sincew € b-ker(f)-b~1,3d € ker(f)
stw=b-d-b~!

We show that f(w) =ep
flw)=fb-d-b=) = f(b) = f(d) * f(b~T)
=f(b)xepx f(b)

:eF

Therefore w € ker( f)

Recall that for a function, f:(D,-)— (F,x*), our (D,-) is the domain, and the (F, ) is the co-
domain. This means that the range is a subset of F. range C F', and so range(f) < F.

October 21st, 2020
Result: Consider the following group homomorphism:
f:(Da')_’(W’*)
Then we can say that range(f) <W. The range of f is a subgroup of W.

Proof:

Let a, b € range( f)
Show a~! % b € range( f)

Sincea, b €range(f),dx, y€ Dst f(z)=aand f(y) =
Hence f(z~") =[f(z)]'=a™"
Thus f(z~ ' y)=f(z7 ") * f(y)=a "' b
=—>a~!xb€Erange(f)

Isomorphism:



is a group homomorphism. We say that f is a group isomorphism iff f is a bijective function. This
means that f is both one-to-one and onto.

If two groups form an isomorphism, this means that they share the same structure. If prof. Badawi
comes into class next week and his name is Mike, the only thing that has changed is his name.
Everything else is the same - he still teaches us Abstract Algebra, etc.

If D and W are isomorphic, if D has 1,000,000 elements, then W has 1,000,000 elements, and so
on. However, the names of the elements are different. It is their structure that stays the same.

Result [Big]:

Assume we have f: (D, ) — (W, %) is a group homomorphism. Then:

D [ker(f)~range(f)

~ means that they are isomorphic to one another. We are saying that the group D /ker(f) is
isomorphic to range( f).

Proof:

We need to construct a map, K, where K: D /ker(f)—range(f) st K is a group homomorphism,
is one-to-one and onto. If we can construct such a mapping, then we are done.

Va-ker(f)e D /ker(f),a€ D

Consider the following:

K(a-ker (f)-'b-ker(f))

—K(a-b-ker(f)) = f(a-b)

=f(a)* f(b) = K(a-ker(f))* K(b-ker(f))

— K isa group homomorphism
We show that K is1 — 1 and onto

Onto:

Let y € range( f). Hence 3z € Dst
fx)=y

Thus K (z-ker(f))= f(z)=vy
Therefore we have shown that

for all elements in the range,

we have some element in D

that mapstoit

1-1:

Assume K (a-ker(f)) = K(b-ker(f))
Show that a - ker(f) =b-ker(f)

We have:
K(a-ker(f))=K(b-ker(f))
K(a-ker(f))=f(a)
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K(b-ker(f))=f(b)
e f(a)= f(b)

Take this right operation:
fla)=fo= ) =f(b) = Fb1)
fla) *[f(b)] "' =ew € range(f)
fla)= f(b~) =ew

fla-b=") =ew

since f is group homomorphism
=a-b~! €ker(f)
=a-ker(f)=0b-ker(f)

Therefore, Kis1 —1

Question: Assume that f:(D,-) — (W, x) is a group homomorphism. Also, assume that |D|=n < oo,
and |range( f)| =m < oco. Prove that m|n. Remember that range(f) <W. We want to prove that
the cardinality of the range is a factor of the cardinality of D.

Proof: We know that D /ker(f)~range(f). Since they are isomorphic:

D /ker(f)|= [range(f)]
Then we can easily see the following:

D]

m: [range(f)| = |D|= |range(f)| x |ker(f)|

in other words:

n=|ker(f)| xm

Therefore, we have shown that m is a factor of n, or the cardinality of the range is a factor of the
cardinality of D.

Question: f:(Z10,+) — (Z21,+) is a group homomorphism. For each a € Zj9, find its image, or
f(a). We want to find the image of every element in Zjo.

Proof: We know that |range( f)| is a factor of |Z1o| =10. This is by the result we just proved. Also,
we know that the range of f has to be a subgroup of (Z21,+). So |range(f)|||Z21| =21.

—>What is the number that is
the factor of 21 and 107
=1

Therefore, we conclude that |range(f)|=1. The subgroup that contains only one element is the
subgroup that contains only the identity. So we have the following:

Ji(Zyo, +) — (Zg1, +)

is a group homomorphism, and f(a)=0Va € Z1o. This is called the trivial group homomorphism.
Every element in the domain maps to the identity of the co-domain.
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Question: f:(Z14,+)— (Z35,+) is a non-trivial group homomorphism. Find range( f) and ker( f).
This means that there exists at least one element in the domain that maps to an element in Zgss
that is NOT 0.

Proof: Firstly, we need to observe that |range( f)| =7 because it has to be a factor of 35 and 14,
so it is either 1 or 7. However, we know that it is a non-trivial group homomorphism, so it must be 7.

range( f) < (Zss, +)
(Zss5, +), 3! subgroup of Zss with 7 elements

Zigs =<1>
35
= 15 —_——
15 =117 ged (5, 35) 7

Therefore range( f) = <5 >
—{0,5,10, 15, 20, 25, 30}

Now, to find the kernel:

%= irange( f)|

because D /ker(f) ~range( f)

14
- 7
[ker(f)]
[ker(f)]=2
How many subgroups with 2 elements do we have in Z14?
1

=ker(f)={0,7}

October 26th, 2020

Let us take a linear differential equation:
y" =3y’ + 7Ty =sin(t) !
Take a mapping of the following form:
frall cont. diff. functions — K
K is indeed a vector space, and it is therefore an Abelian group. Now consider the following:
f(h(t)=h"4+3h"+7h VheK

f is a group homomorphism. This is because it satisfies all the requirements for group homo-
morphism, which means that we can see that f(hi+ ha) = f(h1) + f(h2). This is clear.

Since f is a group homomorphism, we porve that:
K /ker(f)~range(f) (They are isomorphic)

Recall that isomorphic means that they have the safe group structure. We know that K /ker(f)
is a group because K is Abelian and ker(f) is always a normal subgroup to K.
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Also recall that ker( f) = {set of all elementsin K that maptoe=0}. If we want to find what ker( f)
is, we need to see the definition of our function, f. We need to find all h € K'st f(h) =e=0.

By our function, we have sin(#) e, which is in the range of f. Recall this from the Wednesday
lecture:

Ky: K /ker(f) — range(f) st:

Ki(f1+ker(f)) = f(f1)

=3 left coset, say f1 + ker(f) st
Ki(fi+ker(f)) = f(f1) — sin(t) e’
each element in the left coset will
map to the same function, for fi, fo, f3, .
we want f( fi) =sin(t) e’
f(h)=h"+3h"+Th
Ki(fu+Ker(f)) = f(J2) =sin(t) x
each element in f; + ker(f) willmap
tosin(t) et

Tofind f1, f{' +3f{+ 7 f1 =sin(t) e
in DE, thisis our y, (y particular)

In general, whenever we write D ~ L, this means that each element in D corresponds to exactly
one element in L. It means that we have a function, f: D — L st f is group homomorphism, and
f is 1-1 and onto.

Result: f:(D,-) — (W, x) is a group homomorphism. f is 1-1iff ker(f) =ep. This is true for any
group homomorphism.

Proof:

.
Assume fis1—1

Showker(f)={ep}

We know that ep € ker(f) since f(ep) = f(ew)
since fis1 —land f(ep) = f(ew),

we conclude that ker(f) ={ep}

—
Assumeker(f)={ep}

Show that fis1—1

Assume f(a) = f(b), provethata=">

fo)yew

[f(a) = f(O)] = [f(b)]
fla)*[f(B)] = f(b) + [f(D)]
éf(a)*f(b) '=ew
fla-b™) =ew

=a-b” 1Eker(f)
Sincea - b=t € ker( f)and ker( f) = {ep }, we conclude:

a-b-l=ep
a-b"l.-b=ep-b
a=b
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Result: Let D be a finite cyclic group with n < co elements. Then D & (Z,,+). This means that
every cyclic and thus Abelian group is isomorphic to (Z,, +).

Proof: We build the following function:
f:D— (Zn, +)

st f is a group homomorphism. Then we show that f is 1-1 and onto.

Since D is cyclic with n elements, Ja € D st |a|=n and D =<a>. We know that (Z,, +) is cyclic
and |1| =n, with (Z,, +)=<1>.

f:D— (Zn,+)
f(a*)=1F=k Vi<k<n
a)=1+1+1+---+1)
Letz,y € D.Show that f(z-y) = f(z)+ f(y)

z,yeD,x=a",y=am
fay) = f(ama™)
—1mitma — {m 4 qma
=m1+mso

=f(z)+ f(y)

Since |D|=|Zy| =n,weshow that fis1 —1
and hence it will be onto.

We know that ker(f) ={ep}
f)=0= f(a) =1"=0
=m=n

Therefore f(a™)=0
f(a™)=0andthus f(ep) =0

We map the generator to the generator.

October 28th, 2020

Result: Let (D, ) be an infinite cyclic group. Then D = (Z, +). This means that every infinite
cyclic group is isomorphic to Z under addition.

Proof:

Since D is cyclic, D = <a > forsomea € D. We also know that Z=<1>. So we proceed as follows:
we build the following function mapping.

f:D—7Z
st f(a™)=1" VmE€EZ. f is a group homomorphism. Why?

f(aml . amz) — f (am1+m2) — 1'm1+'m2
=1m1 4 M2
=M1+ M2

=fam)+ f(am)
We show that f is onto:

Let K € Z. Then K = 1%
Hencecb=a¥ € D

o1



f)=fa®)=1%

We show that fis1—1

We do this by showingker(f) ={ep}.
Assume f(b) =0forsomebe D

Show b = ep. We are done if we do this.
Sinceb € <a >=D,b=a" for somem € 7Z
—f(b) = f(a™) =1 =0

=—=m =0. Why?

1] =00

Question: Imagine we have the following group: D =74 ® Z11- Is D a cyclic group? We did not
write the operation because we assume that it is addition. Construct all the subgroups of D.

Solution: We know (Z4,+) and (Z11,+) are both cyclic groups. Since ged (4,11) =1, by a previous
HW probelm, we conclude that D is cyclic.

Let H be a subgroup of D. |D|=44. The possibilities for |H|=1, 2,4, 11, 22,44. We will go
through each of the following:

|H|=1— H={(0,0)}

|H|=2— H={(0,0),(2,0)} <D

If we have cyclic, then the subgroup is unique.
|H|=4— H={(0,0), (1,0), (2,0), (3,0)}
This is exactly how we proceed with the rest.
|[H|=11— H={0}®Z11

Fact: D=F & W, assuming that Discyclic. If H < D, then we have the following:
H=H;® Hy,where H; < Fand Hy <W

The proof is technical, but it is simple. We don’t need to do the proof, we can just take it as a given.

Let us have an example where this is not true.
D=74®%s
Give me all the subgroups with 2 elements.

We know that D is not cyclic

since ged (4,6) £ 1

We can come up with many subgroups with 2 elements
{0,2} @ {0} — [H|=2

{0} @{0,3} — [H[=2

[(2,3)], H=<(2,3) >

={(2,3),(0,0)}

But we cannot write thisas F' @ K

A subgroup of D does not necessarily have to be a subgroup of both F and K.

November 2nd, 2020
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Take the following: (D, ), and fix some a € D. Now consider the following function mapping:
f:D—D where f(d)=a-d-a~!

—>Thisis an automorphism map from D to D
fisanisomorphism. This means that there is:

1. group homomorphism, 2.1 — 1 and 3. onto.

f:D— D,andfixa€ D
fld)=a-d-a=!

Let dy,ds € D.Show f(dy-d2) = f(d1)- f(d2)
f(dl . d2) =aqa- (dl . dg) cq L
=a-di-at-a-de-a !

=f(dr) - f(dz)

Show that fisonto

Letx € D.Findsomey € Dst f(y) =«
Lety=a"t-xz-a€D
fly)y=flat-x-a)=a-a"t2-a-a?

=T

fiD—D, f(d)=a-d-a !
Show that fis1—1

Assume f(dy) = f(d2)
Show that d; = d»

1 -1

a-di-a *=a-da-a

l=a-dy-a1-a

—d; =d>

alla-di-a”

Def.: Let ae D. Then C(a)={x € D|xz-a=a-x}. Recall that the center of a group, C(D), is
defined by the following:

CD)={yly-z=z2y VzeD}

Result: Let a € D. Then C(a) < D.
Proof: Let z,y € C(a). Then we need to show that 71y € C(a).

z,y€C(a).Showz 1 -y € C(a)
—a- (a7 y)=(a""y)a
Sincez € C(a),y € C(a),
r-a=a-xandy-a=a-y

1 1

We also know from the notesthata- 2= =x2""-a

Henceclearlya- (z71-y)=(z71-9)-a

Let us take the following example. Let D be a group with |[D|=12,and somea € D. Then C(a)
contains at least 2 elements.

Since C(a) < D,|C(a)||12 ByLagrange
|C(a)|=2,3,4,60r12
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Def.: Let a€ D. The conjugate of a, denoted by conj(a) ={b€ D|b=w-a-w~*forsomew € D}.
When we write b=w-a-w™!, we say that aand b are conjugate. Of course, this is for some w € D.

If a is conjugate to b, then b is also conjugate to b. We can see the following:

b=w-a-w!

Solve for a:

wl-b-w=a

It does not matter how we write this.

Result: (D,-) is a group. We define ~ on D st a~ biff aisconjugate tod. Then we say that ~ is
an equivalence relation.

Proof:

Reflexive: Showa~a
Sincea=e-a-e~ !, (eidentity in D)
Thena~a

Symmetric: Assume a ~b. Show b~ a
a=d-b-d 'forsomed € D
Henced™'-a-d=b

Thusb~a

Transitive: Assume a~b,b~ c. Showa~ ¢
a~b=a=w-b-w forsomeweD (1)
b~e=c=d-b-d forsomedeD (2)

=b=d ! c-d.Substitutebinto (1)
a=w-d~tc-d-w !
Lety=w-d Ly t=d w!
za:y-c-y_1
Thereforea~ ¢

We have shown that ~ is an equivalence relation on D. It is interesting to note that the equivalence
relation is just a generalization of an equal, =.

D
[a]={beDlb~a}
Choose d ¢ [a]

Fact: If ~ is an equivalence relation on D, then the intersection of every two distinct equivalence
classes are empty sets, and the union of all equivalence classes is D itself. This is exactly the same
way left cosets behave.
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Result: Let a € D. Recall that conj(a)={w-a-w~twe D}. Then |conj(a)| :%. This number
tells you exactly how many elements are conjugates to a. Be careful with the fact that we are
considering the center of a, not the center of the group D.

|D|
|C(a)]
that are conjugates to a is the same as the number of left cosets of C'(a).

is the number of left cosets of C'(a). In other words, we are saying that the number of elements

November 4th, 2020

Proof: Let L =set of all distinct left cosets of C(a), say L={C(a),a1-C(a), ... an-C(a)}. We
define the following function:

f:L={C(a),a1-C(a), ....,an- C(a)} — conj(a)

flai-Cla))=a;-a- ai_l € conj(a)
We need to show that fis1 — 1 and onto.

f: L — conj(a)

fla;-C(a))=a;-a-a;*

Let b € conj(a), henceb=w - a - w~" for some w € D
Hence f(w-C(a))=w-a-a"*=b

Therefore f is onto.

Let a;- C(a) € L. Chooseb € a; - C(a)

We will show that f(b-C(a)) = f(a;- C(a))
=a;-a-a; '=b-a-b!

All elements in the left coset are assigned to

one and only one element in conj(a).

Letb€a;-C(a).b=a;-dforsomed € C(a)
ba-b~t=(a;-d)-a-(a;-d)~*
=a;-d-a-dt-a;t

Sinced € C(a), then:

ai-a-d-d'-a;?

:ai'wa;l

C(a)

Assume f(b-C(a))= f(d-
=d-C(a)

Show that b- C(a)

f(b-Cla))=b-a-b?
fd-C(a))=d-a-d!
Togetb-a-b-'=d-a-d!
weshowb-d~1 € C(a)

b=t-b-a-bl-d=b"l-d-a-d'-d
a-b~t-d=b"1-d-a

=b"1.d e C(a)Since it commutes with a
Thus fis1—1
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Result: |D|=p"=|C(D)| > p, for some prime number p. This is an extension of a previously
shown result where we said that if |D| = p? for some p prime, then D is an Abelian group.

Proof:

Let a € D. |conj(a)| is a factor of |[D|=n. Why is this true? Because |conj(a)] :%.

Observation: Let a € C(D). Then conj(a) ={w-a-w w € D} = {a}. Since a is already in the
center, it commutes with every element of D. Therefore we have that the conjugate of «a is itself.

Recall the equivalence relation, ~. If a € C(D), thenconj(a) =[a]={a}. Let us take a look at D:

o) P

N o
w ]

Let conj(a), conj(ay),conj(az), ..., conj(a;) be the set of all distinct equivalent classes of ~, where

ai,az, ... 5ai¢ C(D)

if b¢ C(D), then conj(b) N C(D)=@. Now let us take some by ¢ conj(b) UC(D) = conj(by) N
conj(b) =@ and conj(b;) NC (D) =2.

This means: Let conj(b1),conj(bs), ....,conj(b) bealldistinct conjugate classes st b1,ba, . ,bp & C(D).
Then:

D =C(D)Uconj(by) Uconj(ba) U - -- U conj(by)
= |D|=|C(D)| + |conj(by)| + - - + [conj(bs)|
=—From the hypothesis, |D| = p"

p" =|C(D)|+ |conj(b1)| + - - - + |conj(br)|
=|C(D)|=p

Since by, by, ..., by ¢ C(D), then |conj(b;)| = p™ forevery 1 <i < k. We have:
p"=[C(D)[+ [conj(br)[ + - - + [conj(bk)]
pr=IC(D)|+p" +p"+ - +p™

=p||C(D)]
and thus |C'(D)| > p

Def.: Consider the following:

fi=(123)0(45)
fo=(357)0(2 4)

By staring we know that both fiand fo are of order 6 and they are the same type. They are
compositions of a 3-cycle and a 2-cycle.

56



Result: We say that two compositions, or in our case fi and fo are conjugate to each other in S,
iff they have the same type.

November 9th, 2020

(Most of the lecture was a discussion of the exam with a small introduction to simple groups.)

We will first go to the second question of the exam:
Question: |D|=65, H <D and|H|=13. Show that D is a cyclic group.

Proof: Let x ¢ H. If we show that |z|= 65, we are done. Assume there is no elements in D that
have order 65. Hence if x € D, then |z|=1,50r13.

We first claim |z| =5

v -HeD/H

Since |D/H|=5, |z - H|isafactor of 5
Butsincex ¢ H, |z- H|=5

= Letm=|z|,2™=e€D
(x-H)™=H € D/H = 5isafactorof m
Therefore m =5 or 65

How many subgroups of order 5 does D have? How many elements of order 5 does D have?

=—no. of elements of order 5 outside of H:

H =65 — 13 =>52elements of order 5

Now, how many subgroups do we have of order 57
If K isasubgroup with 5 elements, then

K has 4 elements of order 5

:>5T42 =13 subgroups of order 5

Choosea € Dst|a| =5, and choose h € H st |h| =13
Nowlety=a-he Handy ¢ H
a-h=y€H=a=y-h~ '€ H,contradiction
therefore y ¢ H

=|y[=5

H, =<a-h>—subgroup of order 5
Consider Hs = <a - hy > subgroups of order 5

So we can construct Hy, Ho, ., H1s, each with exactly 5 elements. We construct them as <a-hy >,
__,<a-hia>. Also, we have <a > =H;3.

D has 13 subgroups, call them Fy, Fy, ., Fi3, where F} = <aj >, with |a;1| = 5 and so on for all. We
constructed H; = <aj - h; >, and we know that Hi3= <aj >, because we are doing - with e.

Proof was not completed and left here after some complications.



Def.: Let (D,-) be a group. We say that (D, ) is simple iff {e} << D. This means that D has no
non-trivial normal subgroups.

Observation: D is a finite Abelian group. Then D is simple iff |D|=p for some p prime. The
concept of simple groups become more interesting if our group is not Abelian.

November 11th, 2020

Question 2 of the exam needs a special case of Sylow’s theorem, which was not introduced to us
before. Therefore it is removed. However, the case is mentioned below now.

Fact: Assume that g1, g2 are two distinct prime numbers and ¢; < g2. Assume we also have a group,
(D,-),st|D|=q1 %X ga2. If ¢1 is not a factor of (g2 — 1), then D is a cyclic group.

Result: Let (D, ) be a group and H <D, K < Dst H-K = D, orin other words |H| x |K| =
|D|and H N K ={e}. Then we have the following: D~H ®K~D/K®D/H.

Proof: To prove that this isomorphism is true, we show group homomorphism first and then show
that it is 1-1 and onto. We take the following function mapping:

f:(D,y—D/H®D/K

f(d)=(d-H,d- K),assuming D is finite
We show that f is group homomorphism.
f(dy-d2)=(dy-do-H,dy-ds- K)
=(dy-H,d,-K)® (d2- H,ds- K)
=f(d1) @ f(d2)

What is |[D/H®D/K|? Itis |D/H|x|D/K|=|D|. If we show equality between |D/H & D /K|
and | D], it would suffice to show that f is 1-1 [Fact: f:S— L,|S|=|L|, then f is 1-1iff f is onto].

We have that |D/H@D/K|:% x%:%. Since H-K =D and HN K = {e}, we conclude
that |D/H ® D/ K|=|D]|.

So far, we have that f is group homomorphism, and |D/H & D/K|=|D|. To show that f is
bijective, we only need to show that f is 1-1.

f:(D,)—D/H®D/K,
with f(d)=(d-H,d- K)
To conclude fis1— 1, weshow

ker(f) ={e}

Assume f(b)=(e-H,e- K)forsomebe D
Show thatb=e

FO)=0b-H,b-K)=(e-H,e-K)
—b-H=c-Hb-K=c-K

be Handbe K

=beHNK

and b= e since we assumed H N K ={e}
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We have proven that D~ D /K @ D/ H. Now we have to show that D~ H @ K. Let us define the
following mapping:

L:D—H®K

Letde D.Since D=H - K, then
Jhe Handke Kstd=h-k
L(d)=L(h-k)=(h,k).

Show that L is well defined.

Assumed=hi-ki=ho- ko

Show that hq = hoand k1 = ko
hy-ko=ho ko=

hyt hy-ki=ko

—hy hi=ko kit

hy'-hie Handky - ky'e K
ky-ky'e HNK, hy' - hie HNK
ko - k;l_1 =candthusk; = k>
similar argument to show i = ho
Therefore L is well defined

L:D—HeK,Ld)=(h,k)
whered = h - k, both unique.

D|=|H & K| =|H| x|K|

To show L is bijective, we have to show
Lis1—1,by concludingker(L) ={e}

L(d) = (h, k) = (ee)
—h=c,k=c¢
ker(L)={e}andthus Lis1—1

To show L is group homomorphism,

we play the same game as usual.

Let us take an example, say |D|=35,with H <Dand K < D.|H|=7and |K|=5. Prove that D is
a cyclic group.
[H|- K] _7x5_
|[HNK]| 1
since HNK ={e}
H=~77and K =~ Zs
Since H <Dand K <D, H-K=D
withHNK={e},D~H® K
D~ T ® 7
~ 135

35

K| =

Therefore we have shown that, through the isomorphism of D to Z,, that D is a cyclic group given
its specifications and assumptions in the question.

November 16, 2020
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Recall that if H and K are subgroups of D, then:

|H| < |K]|

H-K|=
A - K= TR

Also recall the special case of Sylow’s theorem. We will now proceed with some examples as
practice.

Question: (D,-) is a group with |D|=239. Assume D has normal subgroups, H, K with the following
properties: |H|=3and|K|=13. Provethat D iscyclic.

Solution: We use the following facts. |D|=39,H <Dand K <D, with |H|=3and |K|=13.

|H| x |K| 3x13

A - K| = Hnk] 1
|[HNK|=1since HNK ={e}
ged (13,3) =1

Since |H - K|=39,H-K=D
Therefore D~ H & K

Since |H|=3,—H ~Z3

and K ~ Z3

D~73® 73

because ged (3,13) = 1, D is cyclic and
D = 739 under addition

Result: Cauchy’s Theorem: Let |D|=mnand q|n, where gisprime. Then D has an element of order
q. This result also means that D has a subgroup with ¢ elements.

Remember that if D is Abelian and we have a subgroup with m elements, then we must have an
element of order m.

Proof: Assume |D|=gq. Then D~Z, and we are done because each non-identity element will have
order ¢ by Lagrange’s theorem.

This is how we proceed with induction for groups:

Assumeresult is true

for every group of order m, m <n

Consider C'(D), center of D

We have two cases. Firstly:

1.

Assume q||C(D)]

Remember that the center, C'(D), is Abelian
since ¢| |C(D)|, we conclude that C'(D)

has asubgroup with g elements, say H

Hence H ~ 7, and thus H has an element
oforder g, and since H < D = D has an element

of order q. Therefore we are done.

2.
Assume ¢ isnot a factor of |C'(D)|
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Recallifa € D, |conj(a)| :%

Recall: if | D| =n, then:

D] = |C(D)| + conj(ar)] + |conj(az)] + - + leon(ax)
forsome ay, ag, .., ar ¢ Cla)

— By staring, we can see that:

Ja;, 1 <4< kst gisnot afactor of |conj(a;)|

__ID]
|C(ai)
== |conj(as)| x |C(as)| = | D
= qisnot a factor of |conj(a;)| = ¢| |C(a;)|
We know that C'(a;) # D because a; ¢ D
C(a;) < Dand|C(a;)| <n

|conj(a;)]

we have that:

q||C(a;)| and [C(as)| <m

—by hypothesis, C(a;) will have an element of order ¢
= D has an element of order ¢

Recall from the HW that if H < D and [H: D] =2 :% (number of all left cosets of H), then we

have that H <t D. We will use it in the following result.

Fact: H <D and [H: D] = ¢, where ¢ is the smallest prime factor of |D|. We conclude that H is
a normal subgroup of D, H <1 D. This is obviously a general case of the HW proof.

Application of Theorem: Take an Abelian group, D.|D| = p3 where p prime. Porve that D = Z,3,
Dx7p® Ly, or D7y ® Ly ® L.

To help, if we have K1 ® Ko® -+ @ K, ={(a1,a2, ... ,an)| a1 € K1,a2€ Ko, . ,an,€ K,}. As an
example of this, we will also see the order: For K1 @ Ky ® K3, |(a1, ag, ag)| =lem (Jay], |asz|, |as|).
Common mistake for the lem of three numbers:

456
1 4,6,5) F ——F———
em (4,6, )#gcd(4,6,5)

We have to take two steps: First we calculate the lem of any two of the numbers, and then take
that and find the lem with whatever number remains.

lem (4,5, 6)
45

=lem (4,5) =———~=2
cm (4,5) acd (4.5) 0
206
lem (20, 6) = —209
=lcm (20, 6) 20d (20.6)
=60

November 18th, 2020

Recall that if we have a group with |D| = ¢; X g2 and we have that ¢;is NOT a factor of (g2 — 1),
then we conclude that D is a cyclic group.

Also recall the following result: let (D, -) be a group and H< D, K <DstH- -K =D,
or in other words |H| x |K|=|D|and H N K ={e}. Then we have the following: D~ H & K =~
D/K®D/H.
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Finally, recall that if H < Dand K < D, then:

_H|x K|
|H - K| =gk

Result: Caley’s Theorem: Let D be a finite group st |D| =n. There exists a subgroup, L, of
Sn,st D~ L. All finite groups are nothing but a subgroup of S,, in terms of the structure of the

group itself.

Proof: We will build the following function mapping:

FZD—>S7L
_ e d2 d3 d”

This map is definitely bijective by staring
Remember that the domain of F'is D

the co-domain of F'is .S,

We will show that F'is group-homomorphism:

Letz,ye D
— e d2 d3 d'n
We need to show that F'(z - y) = F(x) (y)
e dg d3 )
=F(x)o
(@) (y'e y-da y-dz ... y-dn
— € d2 d3 dn
N\zyeazyd zyds . zy-dy

Therefore F(x - y) = F( ZE) o F'(y)

We show that ker(F) ={e}

Let w € ker(F')
=ty )
_<e dy dy .. dn)

e dy d3 .. dy
—w-e=e
—w==e
ker(F)={e}

By 1st isomorphism theorem,

D
F(F‘) ~ range(F)

D
{e}
D =~range(F) < S,

=D

The original theorem was that our group, D, is isomorphic to a subgroup of .S,,. This is exactly what
we show here since range(F') is a subgroup of the co-domain, S,,. In other words, let L =range(F).

Then we have that L < S,,and D ~ L.
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Recall the definition: (D, ) is simple iff {e} is the only normal subgroup of D.

Result: Take A, withn >5.We know that A, <5, and |A,| :%’ The theorem says that A, is a
simple group for every n > 5.

Recall that (Z;,, x) is a group iff n is a prime number.

Fact: (Z;, x), where ¢ is prime, is a cyclic group. For example, we can see the fact in the following:
Let us take (Z31, x) = <a >,|a| =10.

Def.: Let us consider n > 2. Then:
U(n)={a€Z|ged(a,n)=1}
For example, if we have n=7,
U(7)={a€Z}ged(a,7)=1}
U(7)={1,2,3,4,5,6} =7Z%

U(10)={1,3,7,9} % Zjo
U(10)] = 4= (10)

Observe that forn > 2, |U(n)| = ¢(n)

Recall the following result from earlier in the semester: (U(n), x) is an Abelian group with exactly
©(n) elements.

Result: We have that U(n) =~ Zg,—1 @ Zyyor 1@ -+ © gy 1 DL o1 This comes from how we
generate ¢(n).

Consider the following example:

n="73.52
o(n)=6-7>-4-5
U(n) =~ Ze® Zag ® Za® Zs

We can simplify this further
For example, Zy & Zs =~ Zog
:>U(n) = Zinga D Ziog

The proof of this relies on Sylow’s theorem, so we will just take it as a fact rather than going
through the entire proof.

Note: Using the prime factorization, we can write ¢(n) as one of the two:

e(n)=(q—1)g* " (e —1)ge* "
e(n)= (g — ¢ N(gs*—g5>~ ) -+ (g —ap* ")

November 23rd, 2020

Def.: We have H < D. This could be either a normal subgroup or any other type of subgroup.
What does N(H) mean?

NH)={zeD|x-H=H -z}
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This is called the normalization of H in D. In street language, it is the set of all elements in D
where the left cosets of H are the same as the right cosets of H.

If we have that H < D, then N(H)= D. This is trivial, but the concept of the normalization is
interesting when H is NOT normal in D. Further, it is interesting if our group, D, is not Abelian.

By default, H will be a normal subgroup of N(H). N(H) is the largest subgroup of D st H<AN(H).

Result: N(H) < D, and clearly H <N (H)

Proof:

Letx,y€ N(H)

Show thatz~! -y € N(H)
Sincex,y € N(H), we know:
r-H=H -zandy-H=H -y

We show that

xly H=H -2ty

Sincey- H=H -y=—y-H-y '=H
x-H=H z=x-H-x7'=H

Sincey-H-y '=Handx -H-z7'=H,
we conclude that:
ey Hoy b x=H

=gz l.y- H=H-z7'.y

Therefore, we have shown that z=!-y € N(H) and thus N(H) is a subgroup of D.

Question: H < D, with |D|=100. Given that |[N(H)| > 50, prove H < D.

If we prove that N(H)=D = H < D. Therefore this is the roadmap that we will take to prove
this question.

Solution:

Since N(H) < D,|N(H)|||D|
|N(H)| > 50 by the question
Therefore |N(H)| =100| |D| =100

Since|N(H)|=|D|, H <D

Recall the definition of a simple group: {e} <t D. The identity is the only normal subgroup of D.
Also that A,, withn >5 is simple.
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Consider the following example:

a=(12 3 4 5)€is;
la]=5
Let us take some H

H={a,a?a?a* e}

We have the following three statements:
1. H is never anormal subgroup of A5 (True)
2Va€ As,a-H+H-a (False)
3.Forsomea € As,a-H#H-a (True)

If we were told that D is simple, is it possible that D has non-trivial subgroups? Yes, it is possible.
However, if we asked can D have non-trivial NORMAL subgroups, then it is not possible.

Take the following statement:
(ZQ’ +) < (Z4’ +)

Is this statement correct or wrong? This is clearly wrong, because when we are in Zs, we are
taking the addition modulo 2, whereas it is addition modulo 4 in Z,4. They are two different binary
operations and even though Zs is a subset of Z4, the fact is that it cannot be a group because of
the difference in the binary operation.

However, (Z4,+) has a subgroup that is isomorphic to (Zsg, +). How is this true? We have that Z,4
has a subgroup with 2 elements, and this is clearly a cyclic subgroup. Using a previous result, we
know that every cyclic subgroup is isomorphic to some 7, under addition.

November 25th, 2020
Result: Given the following:

U(n)={a€Zy|ged (a,n) =1}, with |U(n)| = ¢(n)
Awt(Zy,) ={f: (Zyn,+) — (Zn,+)| [ is group-isomorphic}
Then we have that (Aut(Z,,),0)~ (U(n), x). Note that Aut(Z,) is the set of all group isomorphisms

from (Zn,+) onto (Zy, +). We show that (Aut(Z,), o) is isomorphic to U(n).

What can we get out of this result? (Aut(%Z,), o)~ (%, x). Note that U(p) = Zj, where p is a prime
number. This means that for all p prime, (Aut(Z,), o) is always a cyclic group.

For example, let us take Aut(Zi2). This is going to be isomorphic to (U(12), x). This means that
the structure of the two groups are the same.

How many group isomorphisms are there from (Zis, +) to (Z12,+)? The answer is |Aut(Z12)| =
U(12)] = p(12) = 4.

Proof:

LetaeU(n)
Fo: (Zipy+) — (Zp, +) st
F.(x)=ax(modn)
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a is fixed.
Our claim is that F, is a group-isomorphism
from (Zp, +) to (Zn, +)

—We show that Fy is a group-homomorphism
Letx,y€Z,

Fla+y)=alz+y)=ax+ay

=Fu(z) + Fa(y)

—Show that Iy, is onto

Let b € Z,,. Show that Jw € Z,, st
Fo(w)=b

Remember that F,(z) = a z(mod n)
—w=a"1-beZ,
F,(a7t-b)=a-(a71-b)=0

—Show that Fis1 —1

We show that ker(F,) = {0}

Let 2 € ker(F,). Weshow that z =0
x€ker(F,) = F,(x)=0=ax
—ar=0=alaz=a"10=2=0

We have shown that F, is a group-isomorphism, for some a € U(n). We emphasize the fact that
F, € Aut(Z,,). This means that each function in Aut(Z,) is a group-isomorphism.

Sub-Result: Let K € Aut(Z,,). then K =F, for some a € U(n). We use the same function mapping
for F,.

Proof:

Given K: (Zin, +) — (Zn, +)

st K is a group-isomoprhism

Show that 3a € U(n) st K (b) = a b(mod n)
VbeZ,

—K=F,

Leta e K(1)

Show that K (z) = a x(mod n) Vx € Z,
K(0)=a-0=0

K(l)=a-1=a

—Assume K (z) = a 2 for some x € Z,,

—Show that K(z +1) =a(zr +1)

=K(x)+ K(1) because K is group-homomorphism
=ax+a=a(zx+1)

What we learned: If K € Aut(Z,,), then Ja€U(a) st K(x) =ax(modn)Vx € Z,, — wherea= K (1).
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Question: Find all elements of Aut(Zi2):

Solution:

U(12) = {1,5,7,11}
Fi: (Zag,+) — (Zy2,+)
Fi(x)=1-2(mod 12) Vz € Z12

Fs: (Z12,4+) — (Z12,+)
Fy(x) =5 2x(mod 12) Va € Z12

and so on.

Now we can prove the original result; that (Aut(Z,), o) =~ (U(n), X).
Proof:

Define the following function mapping:
L:U(n) — Aut(Z,)

L(a)=F,VaeU(n)

Recall the definition of Fy:
Fo: (2, +) — (Zp, +) st
F.(z)=axz(modn)Vx € Z,

Show that L is a group-homomorphism
L(a xb)=L(a)o L(b)
Foxp=FooFy

Foxp(®)=abx Vr€Zy,

F.(x)=ax Vx€Zy,

Fyx)=bx Vx€Z,
F,oFy(z)=Fy,(bx)=abx=F,x(z)

L is clearly onto because of our sub-result
Choose K € Aut(Z,,), K = F, forsomea € U(n)
—>Lisonto

We show that Lis1 — 1
By showing ker(L) = {1}

Let b e ker(L) = L(b) = Fy(x) =
= Fy(x)=br=aVx €Z,
Notethatbe U(n)
=) =b>=b=0b"1-b2=b"1.b
=—=b=1
—=ker(L)={1}

Result: (U(n), x) is cyclic iff =2,4, or 2 p™ for some prime, p,and m > 1. Proof will be covered in
the next lecture.
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Let us take an example first:

Consider U(50)
50 =2 x 52
By our result, U(50) is cyclic

Consider U(100)
100 =22 x 52
By our result, U(100) is not cyclic
If we consider U(100), we know by this result that we cannot have an element of order (100),

because |U(100)| = ¢(100). Since ¢(100) =40 and the order of a subgroup or an element must
divide ¢(100), this means that each subgroup of U(100) will have at most order 20.

November 30th, 2020

Consider U(n). Of course, we know that U(n) is Abelian group under multiplication modulo n.
We have the following cases and subcases:

1. n=2"form>1

m=1,0(n) = {1}
b)m 2,U(n)={1,3} =<3>=~%Zs
c) m=3,U(n)=U2™) ~Zy® Zyn-2

m=T7T—U ) Zio P igs = Ty B Zizo

(2
m:3—>U( ) Zio ® Lo
2. n=p™,m>1, pprime, p+2

know

U(p™)~Zyp—1® Zym—1, from previous idea introduced in lecture. Note that p=2 is

exceptional because (2™)=2™~!but we have that U (2™) % Zom 1. In fact, as noted above,
U (2™~ oy @ iy .

For what values of m is U(2™) cyclic?
m=1-—U(2)={1} — cyclic.

m=2—U(4)xZ,

m>=23—U(2™) = Zy @ Zym-2, not cyclic.

Therefore we can see that U(2™) is cyclic iff m=1, 2.

U(p™) ~ Zp—1 & Zy,m-1 <= cyclic because we have that ged (p — 1, p" ') =1. Therefore we

conlcude that U(n)is cyclic for n = p™, p prime and m > 1. In fact, if we have m =1, we get
U(p) = (Zp, ) = (Zp-1,+)

Question:
Take U (219),a € U(21°) st
|a]| =nis a maximum
Find the value of n. What is the approach we take to solve a question like this?

Solution:

U(210) ~ Zg (&%) ZQS =D
max. order of an element is D
Recall |(a,b)| =lcm (Jal, |b]) =

because Z,, is cyclic in general
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Remember that |U(219)] = p(210) =29.

Question:

Take U (3'%),a € U(3'2) st

|a]| =nis a maximum
Solution:

We know that U(3!?) is cyclic
U(312)]=2-3"
Hencen =2 - 3! because the group is cyclic

and thus if n is maximum, it must be 2 - 311

Let us take n=2p™,m > 1, pprimeand p # 2. Then we have that ¢(n)=(p—1)p™~! and:
U2p™) =2y 1@ Zym—1is cyclic

Further, we have that U(2p™) ~ (p™) ~ Zy, 1 ® Z,m -1 because isomorphism is a transitive opera-
tion. The number of elements in U(2p™) is the same as the number of elements in U(p™).

So far, we know that U(n)iscyclicif n=2,4, p™or 2p™. pis prime and m > 1. Are ther any other
values for n? No. This is all we have.

Consider n = p{'p52, where p; and po are two distinct odd primes.

1 a2—1

p(n)=(p1—1)pI"" x (p2—1)ph
U(n) = Lp,—1® Lo & Lpy -1 ZLyoa
Lp,—1® Zp?lfl is cyclic, even order

Lipy—1® Zpgr 1is cyclic, even order

The direct sum of both is even order
in fact,

U(n) S Zp?17p1 &) Zp;27p2
—Thisis not cyclic

Fact: Take the following:

n:p?l.pgz.....pgk
Un)=U(pi")@U(p3?) @ --- o U(py*)

We always have even, and the gcd between any two cannot be 1. This means that we cannot have
cyclic if this were the case.
Result: U(n) is cyclic iff n=2,n=4,n=p"™, n=2p™, pisprime, p#2andm > 1.

For example, if we take U(4-3°), it is isomoprhic to U (4) & U (3°) ~ Zo & Zio & Zz1. The Zo @ Zsza
poses an issue because it is not of even order and therefore we know that U(4-3°) is not cyclic. It
cannot be generated by one element.
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Classifcation of Finite Abelian Groups (up to isomorphism):

This whole concept relies on the following result previously introduced in the lecture.
Recall HaD,K<D,D=H-Kand HNK ={e}. Thisimplies D~ H ® K.

HW Question:

|D| = p? Prove that D &~ Z,2 or D ~ Zy,, & Z,
Solution:

Dis Abelian. Since p | | D|

=D has an element of order p,
say a

—H=<a>

Choose b ¢ H.Hence |b| = por p?

If |b| = p> = Discyclic
— D= ZPQ

Assume [b|=p

Let K=<b>

K isasubgroup of D with p elements
HNK={e}
H-K=DandthusD~H ¢ K
=D ~7Z,® Ly

Question: Upto isomorphic, classify all Abelian groups with p3 elements.

Solution:

Assume D isnot cyclic.
Let H < D with p? elements
Hence H <1 D because p?|p?

Thereexistsa ¢ H st|a|=p

Assume we were able to prove this

K = <a > with pelements, K <1 D since D Abelian
K N H = {e} because K cannot be inside H

since K = <a >

KNnH={e}—H-K=D

D~H®K
D~7,®Zy20r DX 7y, ® Ly ® 7y
If D was cyclic, D ~ Zp3

D has to have one of these three structures, but it is important to note that the three different
groups are not isomorphic to one another. They have completely different structures.
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December Tth, 2020
Invariant Factors of Finite Abelian Groups:
We first need to agree that Z,, & Zy, ® Zyy, iff ged (m,n)=1.
Proof:

(Sketch) Since m|nm and n|nm, there is a normal subgroup of Z,,, say H,with n elements, and
a normal subgroup F' of Z,,, with m elements.

Since ged (m,n) =1, HN F ={e}. Hence H - F = Zy,,, and by a class result, we know that
Zimn~H @ F. Since H and F' are both cyclic and every cyclic group is isomorphic to some Z,,, we
can conclude that:

H~Zn, F =7,
= Znin, = Loy, ® Lo,

For example, Z11.17~ Z17® Z11. We will need this result to move forward with invariant factors.

Result:

D:Zk1®Zk2®-~-@anzZml@Zm2®m®me

such that the following property holds true: mj|ma|mg| .. |my. In other words, m; is a factor of
ma, which is a factor of ms, all the way to m,,. They are continuous factors of one another until
the end. Furthermore, mq,ms, . m,, are all unique. This means thas each m; is completely distinct.

Question:

Consider the following group:
D ="715® %o ® %19
Find the invariant factors of D.

Solution:

D%Z'ml@zmg@”'@zmw
st each m; is a factor of the next m; 1

D%Zg@Zs@Zg@ZQ@ZS
D = 715 ® Zgo, and thus:
mi= 15, m2:90

These two are clearly unique by our result

We can write D = Z3 @ Zs o ®Zgo. However, although this is true in terms of isomorphism, there
is only one way of writing D in terms of its invariant factors. In this, clearly 3 is not a factor of 5.

Question:
D =7g® ZePD 712

Find the invariant factors of D.
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Solution:

DALy, ® Loy @ -+ © Lo,
stmi|mal| . [maw

We can see that D~ Zig @ Zs ® Zio ® 712

We combine the Zg and Zs since ged (8,3) =1
D=7® %12® Zos
mi1=2,mo=12,mg=24

There is no algorithm to this. We simply have to try and see what we can get. Notice that in the
above example, we know that the last term, m,,, is given by: lem (8,6, 12) =24. So we need to try
to see how we can play with the isomorphism to get all the m; to be a factor of 24.

Question:
D~ 717® %19 ® Ziag

Solution:

In this example, we clearly know that since the gcd between the three numbers is 1, then:
D~ Z17>< 19% 29, w1thm1 =17x19x29

We are done. We only have one invariant factor in this case.

Question:

D%Z4@Z16@Z32

In this case, we know that each of them are clearly factors of the one that follows, and thus m; =4,
mo =16 and mgz = 32.

Classification of Finite Abelian Groups:
Question:

Upto isomorphism, classify all Abelian groups with 81 elements. Note that (81 =3%). This means
that we want to list all possible non-isomorphic groups in terms of direct sums of Z,.

So if we have one particular Abelian group that has 81 elements, let us call it D, then D is
isomoprhic to one and only one of these structures in the list.

Let us make a table to see this example. Note that all of these structures are NOT isomorphic to
each other.

| Partitions of 4 structures with 81 elements|

1+1+1+1 Zis® Zs® Zs®Zs

242 Zig ® Zo

1+3 T3 ® Loy

1+142 73 ® 73D Zg

4 Zs1 (cyclic)
Table 4.

72



Fact: D =~ F iff the invariant factors of D equal the invariant factors of F. If we use this result,
we can get the structures essentially for free.

Question:

Imagine we were told that D has 81 elements and D has an element of order 27. Upto isomorphic,
find all possible groups that D is isomorphic to.

Solution:

We simply go to the table we just created and look at it to see in each of the 5 options, an element
of order 27 could exist.

There are the following;:

D=x73® Zoy
D%Zgl

These are the only two possibilities. No matter what we do, these are the only two possibilities for
the structure of D. Note that (Reminder) D is Abelian.

Question:

Imagine D has 81 elements and it has an element of order 27, and D is not cyclic. What are the
possible structures of D upto isomorphism?

Solution:

To add on to the previous question, we know that the group Zsg; is cyclic, because it contains the
same number of elements as D. This new piece of information shows us that the only possible
group structure for D is: Z3 ® Zor.

Question:
Upto isomorphism, classify all finite Abelian groups with 36 elements.
Solution:

We first start with the prime factorization of 36.
36=232.22

Note that D~ H & K ,where |H|=9and |K |=4,with H N K ={e}.
We will proceed by doing two tables:

Partitions of 2| 32=|H| |22=|K]|

2 Zg Zy
1+1 L3 ® 73 Zo® Zo
Table 5.

Here are all our choices for the possible structures for D:

Zo® 7y (1)

LoD ZLo® Lo (2)

T3 ® T3 ® 7y (3)
Ls®Ls®ZLs®Zs (4)
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We can rewrite these 4 in terms of their invariant factors:

Zss (1)
Zo®Z1s (2)
73D 7o (3)

Ze®Zs (4)

None of them are isomorphic to each other because their invariant factors are not the same at all.

As a quick example, if we said our group has an element of order 18, then clearly the possible
structures are either (1) or (2). If we instead said that our group is not cyclic, then the only
possibility would be (3), since the rest are all cyclic groups.

December 9th, 2020

Let us look back and remember some facts:

2. (U,) is a cyclic group iff n=2,4, p™, 2p™ where p is an odd prime number with m > 1

3.

n:p?l.pgz.....pgk
Un)=U(pi")@U (p2*) @ - 2 U(pr*)

4. U(2™)x Lo ® Ly, —2, with m >3
5. Finally, U(p™) ~Zp—1® Lym
Let us take an example. Consider n = 2% x 5% x 72. Then we know that:
Un)=U(2%aU(B3)aU(T%
U(n)mZo® lios ® %y ® Zs>® Ze D Zr
Now, what do we need to do to find the invariant factors?

U(n) ~ Z"nl @ Zmz DD Zwk
We can find wy, = lem (2,24, 4,52,6,7)
wp=245%2-3-7

Alternatively, we can use the formula:

axb
lem (2.8 = @5y
1eta/:p?1.... p%k
and letb: q?l ..... q’glm

We can find the common primes between a and b
call them fl, fg, ey fl

ged (a,b) = f{nin(alﬁl) . flmin(azﬁz)

lem (a, b) = frexenf flmax(alvﬁl)

we also add all missing primes to this.

74



Consider the following example to make this clear:

a:32.53.72.21()
b=23.7%.3

ged (a,b)=2%-7%-3
lem (a,b) =210.32.72. 53

Question:
n=2%.32.72

Write U(n) is terms of its invariant factors

Solution:

Un)=U(@2°) e U(3%) e U(7%)
Ry @ Ligs—g ® Uz D L D 7y
But these are not invariant factors.

Myp="7-6-8
We have Z7.¢.5 as our last term
Zio® Zg® .68

Another example:

Consider U(2° -3 - 52)
Un)=U(2°) @ U(3) dU(5?)
Rty ® 1g ® Loy ® %y © L
my=lem (2,8,2,4,5)=5-8
Rl ® Loy ® %y @ Ls.8

Therefore:
m1:2,m2:2,m3:4,m4:40
Question:
Classify all finite Abelian groups upto isomorphism of order 2332 53.
Solution:

We will proceed by making the table for the partitions

Partition of 3 | Partition of 2 | order 23 order 32 |order 53

0+3 0+2 7 Zg Zy25

1+2 1+1 7o D Uy Lz ® U3 Zis @ Zias

14+1+1 ZLio® Lo @ Lo Zis ® Zis D Zs
Table 6.

Counting the number of choices, we will have exactly 2 x 3 x 3 non-isomorphic groups of our order.
This means there is a total of 18 structures for our group of order 23-32. 53
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Introduction to Rings:
We have (R, +,-), a set R with two binary operations, + and -. It needs to satisfy the following
conditions:

1. (R,+) is an Abelian group

2. (R,-) is a semi-group (Recall that this means it has closure and is associative)

3. Va,b,ce R,wewanta- (b+c)=a-b+a-c. This is the distributive property, both from the
right and the left. ie. (b+c¢)-a=b-a+c-a

A ring is any structure that satisfies these three properties. Our set does not need to be Abelian
under -, but it definitely needs to be Abelian under +.

If (R*,-), where R*= R — additiveidentity of R, is Abelian, we say that R is a field. A field is a ring,
but in the second condition, we remove the additive identity and see whether we have an Abelian
group rather than a semi-group.

Let us see some examples of rings:
(Z,4+, x)isaring

This is because Z under addition is an Abelian group and Z under multiplication is a semi-group.
In fact, this is a commutative ring. This is because Z under multiplication is the same regardless
of order. a xb=bx a.

(R%*2 +,.)isalsoaring
This, however, is not a commutative ring, because the order of multiplication matters in the context
of 2 x 2 matrices.

The set of all continuous functions under addition and composition (semi-group, but non-commu-
cative) is also a ring.
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